• ベストアンサー
  • 困ってます

以下の問題が与えられたのですが、

以下の問題が与えられたのですが、 (4)という定義なしに答える方法はあるのでしょうか? 本問では(4)という定義はありません。 どなたか教えていただけると助かります。 質量m、角振動数ωの1次元調和振動子の ハミルトニアンは(1)式で与えられる。 ここでp(^は省略します)は運動量演算子、 xは位置演算子であり、交換関係[x,p]=xp-px=ih/2πを満たす。 また、(2)、(3)で定義される2つの演算子を考える。 演算子N=a†aの固有値をnとし、 その規格化された固有状態を|n>とする。 すなわちN|n>=n|n>,<n|n>=1である。 次の2つの関係式が成り立つことを示し、 係数A,Bを求めよ。 a†|n>=A|n+1>, a|n>=B|n-1> ただしA,Bは正の実数とする。

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数83
  • ありがとう数1

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1

えらくヒントや誘導が少ない問題ですね(汗) 一般解である(4)式使わなくてもいけます。 交換関係[x,p]=xp-px=ih/2πを満たす がまずヒントです。 交換関係[a,a†]=aa†-a†a を計算してみてください。xp-pxがわかっているので求まるはずです。 [a,a†]=aa†-a†a=1になりましたか? a|n>が固有関数である保障はありませんので 今のところは正体不明な関数、|?>=a|n>とでも置いておきましょう。 演算子Nを作用させてこの関数の形が変わらなければ固有関数であることがいえますね。 (Nという表記が自然数の様に見えてしまいミスリーディングなので注意してください。 例えば、N|n>=n|n>,  N|n-1>=(n-1)|n-1>,  N|2>=2|2> です。念のため。) よってN|?>,つまりNa|n>をぐりぐり計算していけばいいわけです。 途中の変形では N=a†a、aa†-a†a=1の二つを使いましょう。 N|?>=(n-1)|?>になりましたね? よって|?>という関数は固有関数なわけです。 さらに演算子Nの作用によって(n-1)という固有値が生じたということは その関数は|n-1>もしくはその定数倍であるはずです。 つまりa|n>=B|n-1>です。 a†|n>=A|n+1>の式も同様にして示してください。 係数Bを求めます。 nと係数Bに関係がなんとなくありそうです。 <n|N|n>の値を2通りの方法で計算してみましょう。 <n|N|n>=n<n|n>=nこれは簡単ですね。 <n|N|n>=<n|a†a|n>で計算してみましょう。こっちはちょっと難しいです。 <n|N|n>=<n|a†a|n>=B<n|a†|n-1>のその後がちょっと困りますね。 ここで全体の複素共役をとって見ましょう。 ブラケット表記ではわかりにくいので定義どおりに書くと、例えば<n|H|m>は <n|H|m>=intφn† H φm dr なわけですがこれの複素共役をとると <n|H|m>†=(intφn† H φm dr)†=intφn H† φm† dr=intφm† H †φn dr=<m|H†|n> つまり <n|H|m>†=<m|H†|n> という感じの変形になるので、 B<n|a†|n-1>の複素共役をとってやれば B†<n-1|a|n>=B†B<n-1|n-1>=B†B もう一度複素共役をとってやれば、 BB†つまり|B|^2 結局 <n|N|n>=|B|^2=nですから B=√n Aに関しても同様にしてください

共感・感謝の気持ちを伝えよう!

質問者からのお礼

大変ご丁寧な回答を頂き、ありがとうございます。 無事理解できました。 感謝いたします。

関連するQ&A

  • 昇降演算子のブラケットの問題

    昇降演算子のブラケットの問題 以下の問題を解いたら、 ψ=D*exp(-cx^2/2)(c、Dは定数)となり、 下記画像の(5)式を使いませんでした。 どうやったら(5)式を使うのでしょうか。 どなたか教えていただけるとうれしいです。 -- 質量m、角振動数ωの1次元調和振動子の ハミルトニアンは(1)式で与えられる。 ここでp(^は省略します)は運動量演算子、 xは位置演算子であり、交換関係[x,p]=xp-px=ih/2πを満たす。 また、(2)、(3)で定義される2つの演算子を考える。 演算子N=a†aの固有値をnとし、 その規格化された固有状態を|n>とする。 すなわちN|n>=n|n>,<n|n>=1である。 次の2つの関係式が成り立つ。 a†|n>=√(n+1)|n+1>, a|n>=√n|n-1> 上記で定義された固有状態|n>の規格化された波動関数を ψ_n(x)=<x|n>とする。 ここで、|x>は演算子x(^は省略します)の固有状態である。 基底状態|0>の満たす条件a|0>=0を用いて、 ψ_0(x)=<x|0>を求めよ。なお、(4)、(5)の関係式を用いてもよい。

  • 分かる限りで構わないのでお願いします。

    分かる限りで構わないのでお願いします。 ハミルトニアン H=(p^2/2m)+{(m・ω^2・x^2)/2} で記述される1次元調和振動子を考える。ここで、座標x^,運動量p^は正準交換関係[x^,p^]=ihを満たすエルミート演算子であるとする。 a^={√(mω/2h)}・{x^+(ip^/mω)}とおくと [a^,a^’]=1, H^=hω(N^+(1/2)), (N^=a^’a^), [N^,a^]=-a^, [N^,a^’]=a^’, が成立する。これらの公式を用いて以下の問に回答して下さい。 (a^,x^,p^はそれぞれの文字の上に^があるイメージで。a^’はa^の右上に+があるイメージで。) (1)任意の状態ベクトル |Ψ〉に対し、〈Ψ|Ψ〉≧0である事実を用いて、エルミート演算子N^の固有値が、非負の整数値となることを示して下さい。また、状態 |0〉を、 a^|0〉=0, 〈0|0〉=1 を満たすものと定義するとき、Nの固有値nの固有状態が |n〉:=N_n(a^’)^n|0〉と表されることを示して下さい。さらにエネルギー固有値も求めて下さい。 (2)(1)の固有状態 |n〉を 〈n|n〉=1と規格化するとき、規格化因子N_nを決定して下さい。 (3)公式〈x|x^|Ψ〉=x〈x|Ψ〉, 〈x|p^|Ψ〉=-ih・∂/∂x〈x|Ψ〉、などを用いて波動関数φ_n(x)≡〈x|n〉を求めて下さい。 (ヒント:exp(ε^2/2)・exp(-ε/2)=d/dε-εを利用) (4)規格化された固有状態|n〉に対する演算子x,pの行列要素 〈m|x^|n〉, 〈m|p^|n〉を計算して下さい。 (ヒント:まずa^,a^’の行列要素を求め、次にx^,p^がa^,a^’を用いてどのよに書けるか考える。)

  • mathematicaでの計算

    mathematicaで微分演算子を含むハミルトニアンを独立に扱いたのですが,できるのでしょうか? 例えば,一次元調和振動子のハミルトニアンでしたら H=-d^2/dx^2+x^2 ですが,これを独立に扱って (H-E)^2*ψ などの計算をmathematicaで簡便に行いたいのですが(ここでψは簡単な指数関数,ψ=exp(-a*x^2) など),このような計算のプログラミングはどのようにすればできるのでしょうか?

  • 調和振動子の離散的なエネルギー固有値の出所

    量子力学では、調和振動子の問題の解法には2通りの方法がありますよね。 (1)シュレーディンガー方程式を解析的に解く方法 この方法では、エネルギー固有値がとびとびの値を持つのは、無限遠方で波動関数が0になることを要請した(束縛状態)結果だと理解しています。 (2)生成消滅演算子を用いて解く方法 位置演算子(x)や運動量演算子(p)の線形結合を取って生成消滅演算子(a)や(a*)を定義すると、エネルギー固有値は個数演算子(a*a)だけで書くことができて、その結果エネルギー固有値がとびとびの値を取ります。 (1)の方法では、境界条件が重要だったのに、(2)ではそのような境界条件を課すことなく、エネルギー固有値がとびとびの値を取るのは何故ですか?

  • 一次元調和振動子について

    一次元調和振動子の問題を演習して分からない問題がでてきたので質問させていただきます。 ハミルトニアンH=(-h^2/2m)d^2/dx^2+mw^2x^2/2・・・(1) Hψ=Eψのシュレディンガー方程式において (1)のハミルトニアンにポテンシャルV=αx,V=βx^2が加わったときの固有エネルギーをそれぞれ求め、このポテンシャルが加わったことで運動がどのように変化するか簡単に説明しなさい。ただしα、β>0とする。 演算子を使っていろいろ試行錯誤してみましたが、なかなか解答にたどり着けません、よろしくお願いいたします。

  • 量子力学の固有値の問題です。

    量子力学の固有値の問題で、解き方がわかりません。 問題  2状態からなる系のハミルトニアンが以下のように与えられている。    H=g( |1><1| - |2><2| + |1><2| + |2><1| )  このハミルトニアンの固有値、固有状態を求めよ。 というものです。ちなみに、Hは演算子です。 どなたかわかる方いらっしゃいましたら教えてください。 よろしくお願いします。m(__)m

  • 分かる限りで構わないのでお願いします。

    分かる限りで構わないのでお願いします。 ハミルトニアン H=(p^2/2m)+{(m・ω^2・x^2)/2} で記述される1次元調和振動子を考える。(m、ωは正の定数)対応するシュレーディンガー方程式 (-h^2/2m)・(d^2Ψ/dx^2)+ {(m・ω^2・x^2)/2}Ψ=EΨ を直接解くことによって、エネルギー固有値と規格化された固有関数を全て求めて下さい。 ヒント:座標を無次元化するために ε:=(x/x_0),x_0=√(h/mω)とおき、さらにΨ:=u(ε)exp(-ε^2/2) と未知関数を再定義すると、エルミートの微分方程式に帰着する。

  • 量子力学、熱力学の参考書について・・・

     量子力学または、熱力学の参考書でお勧めの物ありますか?大学院の受験の参考書として探しています。特に量子力学の参考書のお勧めを教えて頂ければ本当にありがたいです。それぞれ1冊程持っているのですが、以下に関する記述が少ない(特に量子力学)ので困ってます。  キーワードの羅列で申し訳ないのですが、    量子力学では、ハミルトン演算子、フェルミ準位、フェルミ分布関数、フェルミ気体、ハミルトニアン、ヘルムホルツ自由エネルギ、ボルツマン定数、1次元調和振動子、1次元井戸方ポテンシャルに関して...  熱力学では、サイクル系、ファンデルワールス状態式に関して... 問題集でも参考章でもいいのでよろしくお願いいたします。

  • 分かる限りで構わないのでお願いします。

    分かる限りで構わないのでお願いします。 x^,p^を座標および運動量演算子とし、次のユニタリー演算子を定義する。 (x^はxの上に^があるイメージで) τ(a)=exp(-iap^/h) (aは実定数) 次の問いに答えて下さい。 (1)|x〉をx^の固有値xに属する規格化された固有状態とする; x^|x〉= x|x〉, 〈x|x’〉=δ(x-x’). 正準交換関数[x^,p^]=ihを用いて、τ(a)|x〉もまたx^の規格化された固有状態であることを示し、この固有値求めて下さい。 (2)前問の結果を用い、任意の状態|Ψ〉に対し、 〈x|p^|Ψ〉=-ih(∂/∂x)〈x|Ψ〉 が成り立つことを示して下さい。さらにこの結果を用いて、 p^|p〉=p|p〉、〈p|p’〉=δ(p-p’) で定義される規格化された運動量の固有状態|p〉に対し、その波動関数 Ψp(x)=〈x|p〉を求めて下さい。 (3)系が並進対称であるとき、ハミルトニアン演算子H^は空間並進演算子τ(a)によるユニタリー変換のもとで不変である τ(a)H^τ(a)^-1=H^ このとき「量子力学における運動量保存則」;(d/dt)〈p^〉=0,が成立することを示して下さい。ただし、〈p^〉=〈Ψ|p^|Ψ〉は状態|Ψ〉におけるp^の期待値である。

  • 正準交換関係の物理的な意味

    添付したファイルについてなのですが、演算子を用意してから正準交換関係が成り立つことを示しています。また、φとψが自己共役な演算子であることを示し、これに対しても正準交換関係が成り立つことを示しています。 ここまで正準交換関係にこだわる理由がよく分かりません。なにか物理的な理由があるのでしょうか?