• ベストアンサー
  • すぐに回答を!

昇降演算子のブラケットの問題

昇降演算子のブラケットの問題 以下の問題を解いたら、 ψ=D*exp(-cx^2/2)(c、Dは定数)となり、 下記画像の(5)式を使いませんでした。 どうやったら(5)式を使うのでしょうか。 どなたか教えていただけるとうれしいです。 -- 質量m、角振動数ωの1次元調和振動子の ハミルトニアンは(1)式で与えられる。 ここでp(^は省略します)は運動量演算子、 xは位置演算子であり、交換関係[x,p]=xp-px=ih/2πを満たす。 また、(2)、(3)で定義される2つの演算子を考える。 演算子N=a†aの固有値をnとし、 その規格化された固有状態を|n>とする。 すなわちN|n>=n|n>,<n|n>=1である。 次の2つの関係式が成り立つ。 a†|n>=√(n+1)|n+1>, a|n>=√n|n-1> 上記で定義された固有状態|n>の規格化された波動関数を ψ_n(x)=<x|n>とする。 ここで、|x>は演算子x(^は省略します)の固有状態である。 基底状態|0>の満たす条件a|0>=0を用いて、 ψ_0(x)=<x|0>を求めよ。なお、(4)、(5)の関係式を用いてもよい。

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数704
  • ありがとう数1

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1

波動関数を規格化するときに使う。つまり、Dを決めるとき。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ご回答頂き、ありがとうございます。 まさしくそうですね。 計算してみます。

関連するQ&A

  • 以下の問題が与えられたのですが、

    以下の問題が与えられたのですが、 (4)という定義なしに答える方法はあるのでしょうか? 本問では(4)という定義はありません。 どなたか教えていただけると助かります。 質量m、角振動数ωの1次元調和振動子の ハミルトニアンは(1)式で与えられる。 ここでp(^は省略します)は運動量演算子、 xは位置演算子であり、交換関係[x,p]=xp-px=ih/2πを満たす。 また、(2)、(3)で定義される2つの演算子を考える。 演算子N=a†aの固有値をnとし、 その規格化された固有状態を|n>とする。 すなわちN|n>=n|n>,<n|n>=1である。 次の2つの関係式が成り立つことを示し、 係数A,Bを求めよ。 a†|n>=A|n+1>, a|n>=B|n-1> ただしA,Bは正の実数とする。

  • 分かる限りで構わないのでお願いします。

    分かる限りで構わないのでお願いします。 ハミルトニアン H=(p^2/2m)+{(m・ω^2・x^2)/2} で記述される1次元調和振動子を考える。ここで、座標x^,運動量p^は正準交換関係[x^,p^]=ihを満たすエルミート演算子であるとする。 a^={√(mω/2h)}・{x^+(ip^/mω)}とおくと [a^,a^’]=1, H^=hω(N^+(1/2)), (N^=a^’a^), [N^,a^]=-a^, [N^,a^’]=a^’, が成立する。これらの公式を用いて以下の問に回答して下さい。 (a^,x^,p^はそれぞれの文字の上に^があるイメージで。a^’はa^の右上に+があるイメージで。) (1)任意の状態ベクトル |Ψ〉に対し、〈Ψ|Ψ〉≧0である事実を用いて、エルミート演算子N^の固有値が、非負の整数値となることを示して下さい。また、状態 |0〉を、 a^|0〉=0, 〈0|0〉=1 を満たすものと定義するとき、Nの固有値nの固有状態が |n〉:=N_n(a^’)^n|0〉と表されることを示して下さい。さらにエネルギー固有値も求めて下さい。 (2)(1)の固有状態 |n〉を 〈n|n〉=1と規格化するとき、規格化因子N_nを決定して下さい。 (3)公式〈x|x^|Ψ〉=x〈x|Ψ〉, 〈x|p^|Ψ〉=-ih・∂/∂x〈x|Ψ〉、などを用いて波動関数φ_n(x)≡〈x|n〉を求めて下さい。 (ヒント:exp(ε^2/2)・exp(-ε/2)=d/dε-εを利用) (4)規格化された固有状態|n〉に対する演算子x,pの行列要素 〈m|x^|n〉, 〈m|p^|n〉を計算して下さい。 (ヒント:まずa^,a^’の行列要素を求め、次にx^,p^がa^,a^’を用いてどのよに書けるか考える。)

  • 分かる限りで構わないのでお願いします。

    分かる限りで構わないのでお願いします。 x^,p^を座標および運動量演算子とし、次のユニタリー演算子を定義する。 (x^はxの上に^があるイメージで) τ(a)=exp(-iap^/h) (aは実定数) 次の問いに答えて下さい。 (1)|x〉をx^の固有値xに属する規格化された固有状態とする; x^|x〉= x|x〉, 〈x|x’〉=δ(x-x’). 正準交換関数[x^,p^]=ihを用いて、τ(a)|x〉もまたx^の規格化された固有状態であることを示し、この固有値求めて下さい。 (2)前問の結果を用い、任意の状態|Ψ〉に対し、 〈x|p^|Ψ〉=-ih(∂/∂x)〈x|Ψ〉 が成り立つことを示して下さい。さらにこの結果を用いて、 p^|p〉=p|p〉、〈p|p’〉=δ(p-p’) で定義される規格化された運動量の固有状態|p〉に対し、その波動関数 Ψp(x)=〈x|p〉を求めて下さい。 (3)系が並進対称であるとき、ハミルトニアン演算子H^は空間並進演算子τ(a)によるユニタリー変換のもとで不変である τ(a)H^τ(a)^-1=H^ このとき「量子力学における運動量保存則」;(d/dt)〈p^〉=0,が成立することを示して下さい。ただし、〈p^〉=〈Ψ|p^|Ψ〉は状態|Ψ〉におけるp^の期待値である。

  • 運動量演算子について

    シュレディンガー方程式でハミルトニアンのうちの運動エネルギーのところがなぜ、運動量演算子を二度同じ波動関数に二階の偏微分のようにかけるのかよくわかりません。古典力学でのp^2/(2m)はわかるのですが、それがなぜ、二階の微分になるのでしょうか?どちらかと言うと波動関数に運動量演算子を掛けた結果を二乗するなどの方がしっくりくるのですが、どなたか説明していただけると助かります。

  • ブラケット記法がわかりません

    いつもお世話になっています。 参考書読めば済んでしまう話とは承知しつつ、簡単なことだとも思うので、よろしくお願いします。 PとQはそれぞれ運動量、位置に対応する演算子だと思うのですが、 <x|Q=x<x| <x|P=-ih∂<x| となる、と教科書にありました。(hは2πで割ったやつです) 真空状態の波動関数を求めるのにΦ_0(x)=<x|0>とおいて、<x|a|0>=0と消滅演算子aをP、Qで表すことを用いて、方程式を導出しています。 物理になれてないので、混乱しているのですが、<x|Q|0>=x<x|0>がまったく理解できません。状態ベクトルはxの関数と思っているのでしょうか?それとも単なる抽象的なベクトルと思っているのでしょうか。0とかxとかがベクトルであったり、スカラーであったり、あるいはスカラー変数であったりといろんなように見えて、わけがわからなくなってしまってます。

  • 一次元調和振動子について

    一次元調和振動子の問題を演習して分からない問題がでてきたので質問させていただきます。 ハミルトニアンH=(-h^2/2m)d^2/dx^2+mw^2x^2/2・・・(1) Hψ=Eψのシュレディンガー方程式において (1)のハミルトニアンにポテンシャルV=αx,V=βx^2が加わったときの固有エネルギーをそれぞれ求め、このポテンシャルが加わったことで運動がどのように変化するか簡単に説明しなさい。ただしα、β>0とする。 演算子を使っていろいろ試行錯誤してみましたが、なかなか解答にたどり着けません、よろしくお願いいたします。

  • 量子力学の固有値の問題です。

    量子力学の固有値の問題で、解き方がわかりません。 問題  2状態からなる系のハミルトニアンが以下のように与えられている。    H=g( |1><1| - |2><2| + |1><2| + |2><1| )  このハミルトニアンの固有値、固有状態を求めよ。 というものです。ちなみに、Hは演算子です。 どなたかわかる方いらっしゃいましたら教えてください。 よろしくお願いします。m(__)m

  • 三次元の調和振動子と軌道角運動量

    三次元の調和振動子の波動関数はエルミート多項式を使った一次元のと同じようなものになると思います。(違ったらいってください。) この基底状態と第一励起状態と第二励起状態の波動関数を組み合わせて、軌道角運動量の固有関数を作ることはできますか? できるならどのようにすればいいですか? お願いします。

  • 3つ以上2項演算子が定義されているものは何と呼びますか?

    群は一つ 環と体は2つ の2項演算子が定義されているわけですが、 3つ以上の2項演算子が定義されている集合はないのでしょうか? あるとすると呼び方はないのでしょうか?

  • Blochの定理

    H(ハミルトニアン)の固有状態はU(a)(並進演算子)の同時固有状態であることから、Blochの定理が示されると参考書に書いてありましたが、どのように説明できるのでしょうか?教えてください。