• ベストアンサー
  • 困ってます

分かる限りで構わないのでお願いします。

分かる限りで構わないのでお願いします。 ハミルトニアン H=(p^2/2m)+{(m・ω^2・x^2)/2} で記述される1次元調和振動子を考える。ここで、座標x^,運動量p^は正準交換関係[x^,p^]=ihを満たすエルミート演算子であるとする。 a^={√(mω/2h)}・{x^+(ip^/mω)}とおくと [a^,a^’]=1, H^=hω(N^+(1/2)), (N^=a^’a^), [N^,a^]=-a^, [N^,a^’]=a^’, が成立する。これらの公式を用いて以下の問に回答して下さい。 (a^,x^,p^はそれぞれの文字の上に^があるイメージで。a^’はa^の右上に+があるイメージで。) (1)任意の状態ベクトル |Ψ〉に対し、〈Ψ|Ψ〉≧0である事実を用いて、エルミート演算子N^の固有値が、非負の整数値となることを示して下さい。また、状態 |0〉を、 a^|0〉=0, 〈0|0〉=1 を満たすものと定義するとき、Nの固有値nの固有状態が |n〉:=N_n(a^’)^n|0〉と表されることを示して下さい。さらにエネルギー固有値も求めて下さい。 (2)(1)の固有状態 |n〉を 〈n|n〉=1と規格化するとき、規格化因子N_nを決定して下さい。 (3)公式〈x|x^|Ψ〉=x〈x|Ψ〉, 〈x|p^|Ψ〉=-ih・∂/∂x〈x|Ψ〉、などを用いて波動関数φ_n(x)≡〈x|n〉を求めて下さい。 (ヒント:exp(ε^2/2)・exp(-ε/2)=d/dε-εを利用) (4)規格化された固有状態|n〉に対する演算子x,pの行列要素 〈m|x^|n〉, 〈m|p^|n〉を計算して下さい。 (ヒント:まずa^,a^’の行列要素を求め、次にx^,p^がa^,a^’を用いてどのよに書けるか考える。)

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数97
  • ありがとう数1

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1

a^’エルミート共役の意味ですよね? 一番初めだけぱっと見でわかったので示します。他はやっぱしご自分で本をみることを勧めます。 調和振動載っている量子力学のテキストならだいたい載ってるはず。 (1)任意の状態ベクトル |Ψ〉に対し、〈Ψ|Ψ〉≧0である これに対して、 〈Ψ|N^|Ψ〉=〈Ψ|a^’a^|Ψ〉=(〈Ψ|a^’) (a^|Ψ〉) ここで |φ〉=a^|Ψ〉 と新たに定義すれば、 〈Ψ|N^|Ψ〉=〈φ|φ〉≧0 一方 N^|Ψ〉=λ|Ψ〉 という固有関係を考える。これを上の式に放り込む。 〈Ψ|N^|Ψ〉=〈Ψ|(N^|Ψ〉)=〈Ψ|(λ|Ψ〉)=λ〈Ψ|Ψ〉≧0 ルール(1)より〈Ψ|Ψ〉≧0が必ず成立するので、自動的にλもλ≧0を満たす。 ゆえに演算子N^2の固有値は正の値しか取りえないと言える。 続きは頑張れ^w^ノ

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 分かる限りで構わないのでお願いします。

    分かる限りで構わないのでお願いします。 x^,p^を座標および運動量演算子とし、次のユニタリー演算子を定義する。 (x^はxの上に^があるイメージで) τ(a)=exp(-iap^/h) (aは実定数) 次の問いに答えて下さい。 (1)|x〉をx^の固有値xに属する規格化された固有状態とする; x^|x〉= x|x〉, 〈x|x’〉=δ(x-x’). 正準交換関数[x^,p^]=ihを用いて、τ(a)|x〉もまたx^の規格化された固有状態であることを示し、この固有値求めて下さい。 (2)前問の結果を用い、任意の状態|Ψ〉に対し、 〈x|p^|Ψ〉=-ih(∂/∂x)〈x|Ψ〉 が成り立つことを示して下さい。さらにこの結果を用いて、 p^|p〉=p|p〉、〈p|p’〉=δ(p-p’) で定義される規格化された運動量の固有状態|p〉に対し、その波動関数 Ψp(x)=〈x|p〉を求めて下さい。 (3)系が並進対称であるとき、ハミルトニアン演算子H^は空間並進演算子τ(a)によるユニタリー変換のもとで不変である τ(a)H^τ(a)^-1=H^ このとき「量子力学における運動量保存則」;(d/dt)〈p^〉=0,が成立することを示して下さい。ただし、〈p^〉=〈Ψ|p^|Ψ〉は状態|Ψ〉におけるp^の期待値である。

  • 昇降演算子のブラケットの問題

    昇降演算子のブラケットの問題 以下の問題を解いたら、 ψ=D*exp(-cx^2/2)(c、Dは定数)となり、 下記画像の(5)式を使いませんでした。 どうやったら(5)式を使うのでしょうか。 どなたか教えていただけるとうれしいです。 -- 質量m、角振動数ωの1次元調和振動子の ハミルトニアンは(1)式で与えられる。 ここでp(^は省略します)は運動量演算子、 xは位置演算子であり、交換関係[x,p]=xp-px=ih/2πを満たす。 また、(2)、(3)で定義される2つの演算子を考える。 演算子N=a†aの固有値をnとし、 その規格化された固有状態を|n>とする。 すなわちN|n>=n|n>,<n|n>=1である。 次の2つの関係式が成り立つ。 a†|n>=√(n+1)|n+1>, a|n>=√n|n-1> 上記で定義された固有状態|n>の規格化された波動関数を ψ_n(x)=<x|n>とする。 ここで、|x>は演算子x(^は省略します)の固有状態である。 基底状態|0>の満たす条件a|0>=0を用いて、 ψ_0(x)=<x|0>を求めよ。なお、(4)、(5)の関係式を用いてもよい。

  • 分かる限りで構わないのでお願いします。

    分かる限りで構わないのでお願いします。 ハミルトニアン H=(p^2/2m)+{(m・ω^2・x^2)/2} で記述される1次元調和振動子を考える。(m、ωは正の定数)対応するシュレーディンガー方程式 (-h^2/2m)・(d^2Ψ/dx^2)+ {(m・ω^2・x^2)/2}Ψ=EΨ を直接解くことによって、エネルギー固有値と規格化された固有関数を全て求めて下さい。 ヒント:座標を無次元化するために ε:=(x/x_0),x_0=√(h/mω)とおき、さらにΨ:=u(ε)exp(-ε^2/2) と未知関数を再定義すると、エルミートの微分方程式に帰着する。

  • 偏微分とエルミート共役

    運動量演算子Pを用いて、固有値方程式  P|p>=p|p> と表せるとき、Pを座標表示で書くと  P=-ih~∂/∂x   (h~ はエイチバーです) であることを用いて、  -ih~∂/∂x|p>=p|p> ですが、ここでこの方程式の両辺のエルミート共役の式に書き換えると、  {-ih~∂/∂x|p>}^†={p|p>}^†  ⇔ih~<p|(∂/∂x)=p<p| となると思ったのですが、実際は  ih~∂/∂x<p|=p<p| のようでした。 どうしてxでの偏微分(という演算子)は<p|というブラと入れ替わらないのでしょうか? よろしくお願いします。

  • 以下の問題が与えられたのですが、

    以下の問題が与えられたのですが、 (4)という定義なしに答える方法はあるのでしょうか? 本問では(4)という定義はありません。 どなたか教えていただけると助かります。 質量m、角振動数ωの1次元調和振動子の ハミルトニアンは(1)式で与えられる。 ここでp(^は省略します)は運動量演算子、 xは位置演算子であり、交換関係[x,p]=xp-px=ih/2πを満たす。 また、(2)、(3)で定義される2つの演算子を考える。 演算子N=a†aの固有値をnとし、 その規格化された固有状態を|n>とする。 すなわちN|n>=n|n>,<n|n>=1である。 次の2つの関係式が成り立つことを示し、 係数A,Bを求めよ。 a†|n>=A|n+1>, a|n>=B|n-1> ただしA,Bは正の実数とする。

  • ユニタリー変換と交換関係

    ユニタリー演算子Uをエルミート演算子Gを用いて U = exp[iaG] (i:虚数,a:実定数) と表し、ある演算子Aが UAU^† = A を満たすとき、交換関係 [G,A] = 0 が成り立つそうなのですが、どう証明したらよいかがわかりません。 何かヒントをいただけたらと思います。よろしくお願いします。

  • 行列要素について

    物理学科4年のものです。 勉強していて疑問に思ったのですが、 ある演算子の行列要素の物理的な意味って何でしょうか? どなたか教えていただけませんか?よろしくお願いします。

  • 積の演算子についてのブラとケットの算法について教えてください

    ハミルトニアンHと任意の演算子Aの積をHAとします。Hの固有関数を|n>、 |n'>としてそれぞれの固有値をEn、En'とすると H|n>=En|n>、 H|n'>=En'|n'>となります。 今、HAを|n>と|n'>ではさんだ場合の算法についてですが、一応次のように やりました。これでいいのでしょうか? <n'|HA|n>=<n'|H|n'><n'|Å|n>=En'<n'|H|n'><n'|Å|n> =En'<n'|HA|n> ものの本によればHの行列要素とAの行列要素の積で書かれると書いてありま すが。。。上の計算では都合よく真ん中を|n'><n'|としましたが本当にこれで いいのでしょうか?ひとつよろしくお願いします。

  • 角運動量とスピン

    スピン1/2の固有関数Φ1/2,1/2(s)と角運動量の固有関数Φl,m(ang)を使って、演算子($+lL)・($+lL)と演算子Sz+lzの固有値と同時固有関数を求めたいのですが、演算子の文字に計算式を代入して出てきた式が行列と微分演算子を含んでいます。そこからどうやって固有値や固有関数を出すかぜんぜん分かりません。出来るかたがいましたらぜひ教えてください。

  • 固有関数 規格直交

    ある演算子Aの固有値λが二重に縮退していて、その異なる固有関数u1、u2がわかっているとする。 (1)u1、u2の線形結合を作ればそれも演算子Aの固有関数でその固有値はλであることを示せ。 (2)u1、u2は規格化されているが互いに直交していないとする。u1、u2の線形結合を作って規格直交された固有関数を求めよ。 (1)はわかったのですが(2)がどうやって解くのかがわかりません… ご教示お願いしますm(_ _)m