• 締切済み
  • すぐに回答を!

量子力学の質問です。

【1】 MKS単位系での以下の単位を教えてください。 1. 三次元デルタ関数系ポテンシャル -Vδ(x) δ(y) δ(z) 2. 基底状態における交換子の期待値 <0|[a†, a]|0> 【2】 一次元調和振動子でハミルトニアンH=p^2/2m + mω^2x^2/2 で与えられてる時、固有状態を|n>として、期待値 <n|x|n>を求める方法はシュレディンガー方程式を解いて、エルミートを含む一般解を導出して、∫dxΦxΦ ってやる他に簡単なやり方はないのでしょうか? <x>ならば0であると計算しなくても分かるのですが、より一般的に例えば<x^4>とかを求めるとなるとどうすればいいのでしょうか? よろしくお願いします。

共感・応援の気持ちを伝えよう!

  • 物理学
  • 回答数3
  • 閲覧数124
  • ありがとう数0

みんなの回答

  • 回答No.3

エイチバーが出せないので、以下で単にhと書いたらエイチバーのことだと思ってください。 【1】 たとえば、時間に依存しないシュレーディンガー方程式 -h^2/2m d^2Ψ(x)/dx^2 + V(x)Ψ(x) = EΨ(x) の両辺を見比べてやると、量子力学でもV(x)はEと同じ次元であることが分かります。 よってポテンシャルは(具体形に関わらず)エネルギーの次元を持ちます。たとえデルタ関数が出てこようと同じです。MKSではJ(ジュール)です。 <0|[a†,a]|0>については、この単位は<0|a†a|0>と同じですね。 ところでハミルトニアンH=hω(a†a+1/2)で、<0|H|0>はエネルギーの次元を持ち、またhωもエネルギーの次元を持ちますから、<0|a†a|0>は無次元(単位なし)であることが分かります。 【2】 生成消滅演算子を使うと、xやpやその累乗の期待値が比較的簡単に出せます。 まず、a†やaはxやpの一次結合で表せましたね。ということは、逆にxやpをa†やaの一次結合で表せます。 ということは、x^4などもa†とaの多項式で表せるということです。 ということは、<n|x^4|n>が<n|a^4|n>や<n|a†a^3>などなどの和で表せるということです。 これらは、a†|n> = √(n+1)|n+1>, a|n> = √n|n-1>という式を使えば簡単に計算できます。(ついでに言えば <n|a†|n>=(<n|a|n>)*(←複素共役)などを使えばさらに計算量は減ります) こうして求めたそれを使えば<x^4>などを比較的簡単に計算できます。

共感・感謝の気持ちを伝えよう!

  • 回答No.2
  • alwen25
  • ベストアンサー率21% (272/1253)

1 MKSならばJにしかなりようがないですが。 2 通常は変分法を使うと思います。

共感・感謝の気持ちを伝えよう!

  • 回答No.1

自分で考えましょう

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 量子力学的粒子に関する問題

    以下の問題が分かりません。ハミルトニアンがH=(p^2/2μ)+(K/2)x^6のとき、μ、h(バー)、Kの次元をジュール(J)、時間(s)、長さ(m)の3つを用いて表す。また、ハミルトニアンの基底状態のエネルギーE_0と波動関数の空間的拡がりξを、次元解析を用いてμ、h(バー)、Kの組み合わせで表現する。この結果を不確定性原理に基づいて導出する。どなたか教えてください。

  • 一次元調和振動子について

    一次元調和振動子の問題を演習して分からない問題がでてきたので質問させていただきます。 ハミルトニアンH=(-h^2/2m)d^2/dx^2+mw^2x^2/2・・・(1) Hψ=Eψのシュレディンガー方程式において (1)のハミルトニアンにポテンシャルV=αx,V=βx^2が加わったときの固有エネルギーをそれぞれ求め、このポテンシャルが加わったことで運動がどのように変化するか簡単に説明しなさい。ただしα、β>0とする。 演算子を使っていろいろ試行錯誤してみましたが、なかなか解答にたどり着けません、よろしくお願いいたします。

  • 量子力学の問題で困っています

    量子力学の問題なのですが手元に資料が少なく、またネットで調べてもよくわからないので誰か教えて下さい。 1次元の調和振動子の規定状態の波動関数は一座表表示で次のように書ける Ψ(x,t) = Aexp(-2mωx^2/2h)exp(-iωt/2) これが調和振動子のシュレディンガー方程式の解であることを確かめなさい という問題なのですが調和振動子のシュレディンガー方程式というのは (-h^2/2m)d^2Ψ/dx^2 + mω^2x^2Ψ/2 = EΨ でいいのでしょうか? この方程式では時間の項を考慮していないように見えるのですが また、運動量の固有関数が f(x) = (1/√2πh)exp(ipx/h) であることを用いて、この波動関数Ψ(x,t)の運動量表示Φ(p,t)を求めなさい という問題も計算がうまくいかなくて困っています。教えていただけませんか? 式中のhは全てエイチバーです。よろしくお願いします

  • 量子力学

    縮退のない1次元の系でポテンシャルが偶関数の場合、エネルギーの固有関数は偶関数か、奇関数に限られることを示せ。 1次元のシュレディンガ-方程式はポテンシャルV(x)として、 -(h'^2/2m)(d^2φ(x)/dx^2)+V(x)φ(x)=Eφ(x) (h'=h/2π) ポテンシャルが偶関数なのでV(x)=V(-x)となる。 ここからどうすればよいですか?詳しい解説お願いします。

  • 量子力学について

    一次元の系を考え、-∞<x<∞にある電子の状態に対してポテンシャルのV(x)が、 V(x)={ +∞ (x≦0) , -V (0<x≦a) , 0 (a<x)} (V、a正の定数) であるとき、基底状態のエネルギー固有値と波動関数をもとめよ。(ただし、規格化定数は気にしなくてよく、-Vは十分深く、束縛状態は必ずできるものとする。) という問題で、エネルギー固有値を求めようとしたのですが、式が複雑でエネルギー固有値を求めら・れませんでした。どうにかして、基底状態のエネルギー固有値と波動関数だけを求める方法はないでしょうか? 回答よろしくお願いします。

  • 分かる限りで構わないのでお願いします。

    分かる限りで構わないのでお願いします。 ハミルトニアン H=(p^2/2m)+{(m・ω^2・x^2)/2} で記述される1次元調和振動子を考える。(m、ωは正の定数)対応するシュレーディンガー方程式 (-h^2/2m)・(d^2Ψ/dx^2)+ {(m・ω^2・x^2)/2}Ψ=EΨ を直接解くことによって、エネルギー固有値と規格化された固有関数を全て求めて下さい。 ヒント:座標を無次元化するために ε:=(x/x_0),x_0=√(h/mω)とおき、さらにΨ:=u(ε)exp(-ε^2/2) と未知関数を再定義すると、エルミートの微分方程式に帰着する。

  • 量子力学(変分法)

    いつもお世話になっております。 2次元または3次元上で、原点に固定された電荷e(>0)の点電荷に束縛されている電子の基底状態を変分法で調べようという問題です。点電荷から電子までの距離をrとし、ハミルトニアンを      H = - h^2/2m ∇^2 - e^2/( 4πε_0 r ) ;見にくくてすみません とします。hはプランク定数を2πで割ったもの(エイチバー)とします。試行(変分波動)関数として      Ψ(r) = N exp (-αr) を採用するものとし、αを変分パラメータ、Nを規格化定数とします。 ●3次元の場合は、計算が間違えているかもしれませんがエネルギー期待値はh^2/2m となりました。 ●2次元の場合。  Hの期待値を計算したところ(2\pi * \int_{0}^{\infty} Ψ^{*}HΨ r dr ) <H> = 2\pi N^2 (h^2/8m - e^2/ (8\piε_0 \alpha) ) となって、これをαで偏微分しても<H>を最小にするような\alpha は出てこない気がするのですが・・・・どうすればいいのでしょうか?なお、      ∇^2 f(r) = f ' '(r) + 2/r * f ' (r) であることを利用しました。

  • 量子力学について

    k/r (kは定数 r=(x^2+y^2+z^2)^1/2) のポテンシャルエネルギーをもつ保存系の場合に、定常状態のシュレディンガー方程式を具体的に書き下すと        (-(h/2π)^2/2mΔ+k/r )Ψ=EΨ (Eは固有値 Ψは波動関数 ) これであっているでしょうか? 回答よろしくお願いします。

  • とびとびのエネルギー値(量子力学)について。

    とびとびのエネルギー値(量子力学)について。 ε:エネルギー m:粒子の質量 L:井戸型ポテンシャルが0の領域(1次元) n:量子数 エッチバー=(h/2π) 以上の記号から、次の式が成り立つ。 ε(n)=(1/2m) [(h/2π)π/L]^2 n^2 nの関数としてとびとびのエネルギー値をとるという事みたいなんです。 でも例えば、 f(x)=x^2 → (d/dx)f(x)=2x となり、f(x)は連続な関数であるといえる。 この違いと言うか、 どういった観点からεはとびとびだという事になるのでしょうか?

  • 量子力学の問題がわかりません

    大学で出されたレポートなんですが、わからないので教えてください。 ポテンシャルエネルギーが V=(k1x^2)/2+(k2y^2)/2+(k3z^2)/2 で与えられる三次元調和振動子の状態関数とエネルギー固有値を求めよ という問題です k1、k2、k3 はケイワン、ケイツー、ケイスリーです