- ベストアンサー
- すぐに回答を!
量子力学について
- みんなの回答 (1)
- 専門家の回答
質問者が選んだベストアンサー
関連するQ&A
- シュレディンガー方程式について
k/r (kは定数 r=(x^2+y^2+z^2)^1/2) のポテンシャルエネルギーをもつ保存系の場合に、定常状態のシュレディンガー方程式を具体的に書き下すと (-(h/2π)^2/2mΔ+k/r )Ψ=EΨ となるでしょうか? 回答よろしくお願いします。
- ベストアンサー
- 物理学
- 量子力学2体問題
量子力学の陽子と中性子が核力によって結合している2粒子系の状態についてです。 全質量と換算質量の2つのシュレディンガー方程式をたて、その次に換算質量についてのシュレディンガー方程式を動径部分と角度部分に分け(R(r)とY(θφ))動径部分について考えます。R(r)=χ(r)/rとしてχ(r)の微分方程式を求めました。 次に核力を表すポテンシャルとしてV(r)=∞(r<a) -V。(a<r<c) 0(c<r) の斥力芯を持つ井戸型ポテンシャル(V。>0)でb=c-aとして束縛状態が基底状態であるとするときエネルギー固有値を求める関係式を求める問題なのですが、このときの基底状態とはR(r)とY(θφ)についての微分方程式=λ(=l(l+1))とするとl=0としていいのなぜですか?その理由がよくわからないです。 またこのときの規格化された波動関数とはχ(r)について解けばいいのですか? 解き方を教えて下さい。
- 締切済み
- 物理学
- ∇・j = 0 (量子力学)
独学で量子力学を勉強中にわからないところが出てきました. 以下 h は h bar を表すものとします. 波動関数を ψ(r,t) ,フラックスを j(r,t) = (h/2mi)[ψ*∇ψ - (∇ψ*)ψ] としたとき,定常状態では ∇・j = 0 が成り立つという記述を見て,以下のように示そうとしました. (h/i)∇・j = -(h^2/2m)[ψ*(△ψ) - (△ψ*)ψ] シュレディンガー方程式を用いると = ψ*{ ih(∂ψ/∂t) - Vψ } - { -ih(∂ψ*/∂t) - V*ψ* }ψ = ih( ψ*(∂ψ/∂t) + (∂ψ*/∂t)ψ ) - (V-V*)|ψ|^2 ここで第1項目は,定常状態のシュレディンガー方程式より ψ(r,t) = φ(r)f(t) のように変数分離して f(t) の具体的な形を求めることで 0 になることがわかりました. 問題は第2項目なのですが,これはポテンシャルVが 実数でなければ0にならないと思います. 「定常状態 ⇔ ポテンシャルは実数」 ということは言えるのでしょうか? また,上の式変形も自信がないので すでにおかしなことをやっているのであればご指摘ください.
- ベストアンサー
- 物理学
- 量子力学の問題がわかりません
大学で出されたレポートなんですが、わからないので教えてください。 ポテンシャルエネルギーが V=(k1x^2)/2+(k2y^2)/2+(k3z^2)/2 で与えられる三次元調和振動子の状態関数とエネルギー固有値を求めよ という問題です k1、k2、k3 はケイワン、ケイツー、ケイスリーです
- ベストアンサー
- 物理学
- シュレディンガーの方程式について
1/2mωx^2などのポテンシャルエネルギーをもつ保存系の場合に、定常状態のシュレディンガー方程式を解くことなしに固有値Eを求めることはできますか? 回答よろしくお願いします。
- ベストアンサー
- 物理学
質問者からのお礼
ありがとうございました。