• ベストアンサー

量子力学について

k/r (kは定数 r=(x^2+y^2+z^2)^1/2) のポテンシャルエネルギーをもつ保存系の場合に、定常状態のシュレディンガー方程式を具体的に書き下すと        (-(h/2π)^2/2mΔ+k/r )Ψ=EΨ (Eは固有値 Ψは波動関数 ) これであっているでしょうか? 回答よろしくお願いします。

質問者が選んだベストアンサー

  • ベストアンサー
回答No.1

あっていると思います

seturi38
質問者

お礼

ありがとうございました。

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • シュレディンガー方程式について

    k/r (kは定数 r=(x^2+y^2+z^2)^1/2) のポテンシャルエネルギーをもつ保存系の場合に、定常状態のシュレディンガー方程式を具体的に書き下すと (-(h/2π)^2/2mΔ+k/r )Ψ=EΨ  となるでしょうか? 回答よろしくお願いします。

  • 量子力学

    こんにちは。 シュレディンガー方程式とマクスウェルの波動方程式はどちらも考え方は同じでポテンシャルについて考えるか屈折率について考えるかの違いだと聞いたのですが、それではシュレディンガー方程式でのエネルギー準位に対応するとびとびのあたいをとるものはマクスウェルの波動方程式ではどのようなものなのでしょうか?教えてください。お願いします。

  • 量子力学について

    一次元の系を考え、-∞<x<∞にある電子の状態に対してポテンシャルのV(x)が、 V(x)={ +∞ (x≦0) , -V (0<x≦a) , 0 (a<x)} (V、a正の定数) であるとき、基底状態のエネルギー固有値と波動関数をもとめよ。(ただし、規格化定数は気にしなくてよく、-Vは十分深く、束縛状態は必ずできるものとする。) という問題で、エネルギー固有値を求めようとしたのですが、式が複雑でエネルギー固有値を求めら・れませんでした。どうにかして、基底状態のエネルギー固有値と波動関数だけを求める方法はないでしょうか? 回答よろしくお願いします。

  • 量子力学2体問題

    量子力学の陽子と中性子が核力によって結合している2粒子系の状態についてです。 全質量と換算質量の2つのシュレディンガー方程式をたて、その次に換算質量についてのシュレディンガー方程式を動径部分と角度部分に分け(R(r)とY(θφ))動径部分について考えます。R(r)=χ(r)/rとしてχ(r)の微分方程式を求めました。 次に核力を表すポテンシャルとしてV(r)=∞(r<a) -V。(a<r<c) 0(c<r) の斥力芯を持つ井戸型ポテンシャル(V。>0)でb=c-aとして束縛状態が基底状態であるとするときエネルギー固有値を求める関係式を求める問題なのですが、このときの基底状態とはR(r)とY(θφ)についての微分方程式=λ(=l(l+1))とするとl=0としていいのなぜですか?その理由がよくわからないです。 またこのときの規格化された波動関数とはχ(r)について解けばいいのですか? 解き方を教えて下さい。

  • 量子力学 縮退

    シュレディンガー方程式を具体的に解くことができ,波動関数が求まっているときに縮退のあるなしは以下のような考えで判断できますか? 具体的にもとまったエネルギー固有値に対して,エネルギー固有状態が1つ定まるため縮退はない たとえば エネルギー固有値En に対して エネルギー固有状態が sin(C En x) だった場合,関数の形から縮退なし のように考えるということです. わかりにくくてすみません. また上の考え方が正しいとき縮退があるような形のエネルギー固有関数の形はどのようなものですか?

  • ∇・j = 0 (量子力学)

    独学で量子力学を勉強中にわからないところが出てきました. 以下 h は h bar を表すものとします. 波動関数を ψ(r,t) ,フラックスを  j(r,t) = (h/2mi)[ψ*∇ψ - (∇ψ*)ψ] としたとき,定常状態では  ∇・j = 0 が成り立つという記述を見て,以下のように示そうとしました.  (h/i)∇・j = -(h^2/2m)[ψ*(△ψ) - (△ψ*)ψ] シュレディンガー方程式を用いると = ψ*{ ih(∂ψ/∂t) - Vψ } - { -ih(∂ψ*/∂t) - V*ψ* }ψ = ih( ψ*(∂ψ/∂t) + (∂ψ*/∂t)ψ ) - (V-V*)|ψ|^2 ここで第1項目は,定常状態のシュレディンガー方程式より  ψ(r,t) = φ(r)f(t) のように変数分離して f(t) の具体的な形を求めることで 0 になることがわかりました. 問題は第2項目なのですが,これはポテンシャルVが 実数でなければ0にならないと思います. 「定常状態 ⇔ ポテンシャルは実数」 ということは言えるのでしょうか? また,上の式変形も自信がないので すでにおかしなことをやっているのであればご指摘ください.

  • エネルギー量子化

    1次元でのシュレーディンガー波動方程式についてなんですが、これは井戸型ポテンシャルを仮定します。そしてこの井戸型ポテンシャル中の電子エネルギーが量子化される理由ってなんて書けばいいと思いますか? 波動方程式を解いて、Eを求め、境界条件からkが量子化されると思って、それをEに代入すれば量子化されますが、理由は何かということは何か言葉で説明できる現象があると思ったのですが… どなたかご教授願いたいです。よろしくお願いします。

  • 量子力学の問題がわかりません

    大学で出されたレポートなんですが、わからないので教えてください。 ポテンシャルエネルギーが V=(k1x^2)/2+(k2y^2)/2+(k3z^2)/2 で与えられる三次元調和振動子の状態関数とエネルギー固有値を求めよ という問題です k1、k2、k3 はケイワン、ケイツー、ケイスリーです

  • 量子力学

    縮退のない1次元の系でポテンシャルが偶関数の場合、エネルギーの固有関数は偶関数か、奇関数に限られることを示せ。 1次元のシュレディンガ-方程式はポテンシャルV(x)として、 -(h'^2/2m)(d^2φ(x)/dx^2)+V(x)φ(x)=Eφ(x) (h'=h/2π) ポテンシャルが偶関数なのでV(x)=V(-x)となる。 ここからどうすればよいですか?詳しい解説お願いします。

  • シュレディンガーの方程式について

    1/2mωx^2などのポテンシャルエネルギーをもつ保存系の場合に、定常状態のシュレディンガー方程式を解くことなしに固有値Eを求めることはできますか? 回答よろしくお願いします。

このQ&Aのポイント
  • 購入製品(デジカメde!!ムービーシアター8/デジカメde!!ムービーシアター8 Wedding)を使用したb’sdvdビデオのインストール方法について教えてください。
  • パソコンのOSの詳細情報を教えてください。
  • b’sdvdビデオのインストールでお困りの詳細やエラーなど、具体的な問題点を教えてください。
回答を見る