• 締切済み
  • すぐに回答を!

調和振動子の問題

電場(E)の中に置かれた調和振動子のハミルトニアンが H=(p^2)/2m + (mw^2x^2)/2 + qxE で与えられているとき、これが単調和振動子(simple harmonic oscillator) の問題として表すことができることを証明したいのですが、やり方がわかりません。 x coordinate を変えればいいのかな、と思うのですが、どうすればいいのかわかりません。 アドバイスお願いします。

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数899
  • ありがとう数1

みんなの回答

  • 回答No.1
  • shkwta
  • ベストアンサー率52% (966/1825)

(mw^2x^2)/2 + qxE =(mw^2/2)(x + (qE)/(mw^2))^2 - (q^2 E^2)/(2 mw^2) となるので、x → x + (qE)/(mw^2) と変換するとよいような気がしますが、そういう単純な話でないなら補足してください。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとうございました。 その通りでした。 complete square にして、[x,p]=ih(xはシフトした方、hはエイチバーです。)なので、典型的なharmonic oscillator のハミルトニアンをシフトしただけ、ということみたいです。 ありがとうございました。

関連するQ&A

  • 一次元調和振動子について

    一次元調和振動子の問題を演習して分からない問題がでてきたので質問させていただきます。 ハミルトニアンH=(-h^2/2m)d^2/dx^2+mw^2x^2/2・・・(1) Hψ=Eψのシュレディンガー方程式において (1)のハミルトニアンにポテンシャルV=αx,V=βx^2が加わったときの固有エネルギーをそれぞれ求め、このポテンシャルが加わったことで運動がどのように変化するか簡単に説明しなさい。ただしα、β>0とする。 演算子を使っていろいろ試行錯誤してみましたが、なかなか解答にたどり着けません、よろしくお願いいたします。

  • 調和振動子のハミルトニアンの対角化

    調和振動子のハミルトニアンの対角化 (1)式は(2)式のようなハミルトニアンを完全に対角化していることがわかる、 と教科書に書いてあったのですが、どうしてでしょうか? ここで言われている対角化という操作が何を意味しているのかわかりません。

  • 調和振動子の状態数

    自由粒子の状態数の求め方は分かるのですが、調和振動子の場合が解けません。 問1、1個の1次元調和振動子のエネルギーEが0<E<E0である微視的状態数を求めよ。 問2、N個の3次元調和振動子が体積Vの断熱的な箱に閉じ込められている。エネルギーがEが0<E<E0である微視的状態数を求めよ。 問2であれば系のエネルギーEをpで表し、運動量空間におけるそのエネルギーE以下の領域の体積を求める。これに座標空間での体積Vを掛けてh^3Nで割った値が微視的状態数として求まると思います。自由粒子であれば分散関係E=Σ(p)^2/(2m)と表せますが、調和振動子の場合はE=Σ(n+1/2)h'ωと表されるので、これをどうやって運動量空間で考えればいいのでしょうか。 また問1に至っては体積など領域が指定されていないので、状態数が求まらないように思えます。 上の問題は本の章末問題なのに略解すら載っていないのでかなり困っています。解答ではなく問題の具体的な解き方・考え方でもいいのでどなたか解説を頂けると有り難いです。

  • 1次元調和振動子の正準運動方程式について

    (1)ハミルトニアンHが、H=(p^2)/(2m)+mω(q^2)/2の時、正準運動方程式の一般解が以下のように書けることの示し方を具体的に教えて下さい。 q(t)=Asin(ωt+δ)、p(t)=Aωcos(ωt+δ) (2)1次元調和振動子に対してビリアルの定理が成立することを、(1)の古典解も基にして確かめる方法を教えて下さい。

  • N個の1次元調和振動子の系の構造関数の変数変換

     N個の1次元調和振動子のハミルトニアンHは H=Σ〔i=1~N〕{p〔i〕^2/2m+m(ω^2)(q〔i〕^2)/2} の時、系の構造関数が次式の形に書き表されることを示そうと思っています。 Ω(E)=∫(d^N)q(d^N)pδ(E-H)    ={(2mE)^(N/2)/E}[2E/{m(ω)^2}]∫(d^2N)zδ{1-Σ〔i=1~2N〕(z〔i〕^2)} ですが、  変数変換:(i=1,・・・,N) z〔i〕=p〔i〕^2/{(2mE)^(1/2)}、 z〔i+1〕=q〔i〕/[{m(ω)^2/2mE}^(1/2)] を何処かで用いるとしか分かりません。  誠に恐縮ですがどなたか御回答を宜しく御願い申し上げます。

  • 調和振動子

       D:エイチバー    α:√(mω/D)    q:αx 1次元調和振動子のn=0の場合の固有関数  φ0(x)=(mω/πD)^1/4×exp(-q^2/2)      =(mω/πD)^1/4×exp(-mωx^2/2D) を使って  位置の期待値 <x>=∫x│φ0*│^2 dx  運動量の期待値 <Px>=∫φ0*(-iDd/dx)φ0 dx  位置の二乗の期待値 <x^2>=∫x^2│φ0│^2 dx  運動量の二乗の期待値 <Px^2>=∫φ0*(-iDd/dx)^2φ0 dx の4つを計算したいのですが、ややこしくて出来ません。 どなたか、計算してみてください。 因みに、答えは『0、0、D/2mω、mωD/2』になる筈です。

  • 調和振動子の最小エネルギーについて

    不確定性関係ΔxΔp=h/4πのとき 調和振動子のエネルギーEが E=(Δp^2)/(2m)+(mω^2Δx^2)/2  で定義されているとき、Eの最小値を計算したいのですが ラグランジェの未定数法乗を使わずに 計算しようとして不確定性関係からΔpを消去して E(Δx)=h^2/(32π^2mΔx)+(mω^2Δx^2)/2  に変形しました。 次にdE/dΔx=0 になるΔx が計算できずに困っています。 そして計算で求まった最小エネルギーの物理的意味 も併せてわかる方がいたら教えてください。

  • 調和振動子の固有値

    壁|---○---○---|壁 上の図のように、ばね定数Kの3つのバネ3本で連結された二つの粒子(質量はともにm)の運動のうちで、バネに平行な方向の成分だけに着目して、そのハミルトニアンを     重心座標 X=(x1+x2)/2 相対座標 x=x1-x2 を用いて書き直すと H=[{-(hbar)^2/4m}(∂/∂X)^2 +KX^2]-[{(hbar)^2/m}(∂/∂X)^2 + 3Kx^2/4}] となる。 ここから固有値を求めるわけですが、解説には 重心運動は 質量 2m ばね定数 2K 相対運動は 質量 m/2 ばね定数 3K/2 となってωo=√(K/m) ω=√(3K/m) 固有関数は、それぞれの固有関数の積、固有値は和であらわされるから、 εNn=(N+1/2)(hbar)ωo + (n+1/2)(hbar)ω と書いてあります。 ここで二つ質問があって、 (1)重心運動のばね定数が 2K 相対運動の 質量 m/2 ばね定数 3K/2   という風にどうして表されるのか、 (2)なぜ調和振動子の固有値はそれぞれの和で表されるのか というのが分かりませんでした。 どなたかご教授ください。お願いします。

  • 三次元の調和振動子と軌道角運動量

    三次元の調和振動子の波動関数はエルミート多項式を使った一次元のと同じようなものになると思います。(違ったらいってください。) この基底状態と第一励起状態と第二励起状態の波動関数を組み合わせて、軌道角運動量の固有関数を作ることはできますか? できるならどのようにすればいいですか? お願いします。

  • 電磁場と調和振動子

    電磁場を量子化する途中に、まず電磁場のハミルトニアンを求めたら調和振動子の形になっておどろきました。電磁場と調和振動子が同じ形の式で記述されるということは、両者の間になにか類似点があるからだと思います。両者に共通の性質とはなんでしょうか。解説をよろしくお願いします。