• 締切済み
  • すぐに回答を!

一次元調和振動子の多段階励起問題です。

一次元調和振動子の多段階励起問題です。 摂動がよくわかりません。 Ho = p^2 / 2m + m*w^2*x^2/2 H' = Ax* exp(-t/r) (t≧0) 0 (t≦0) (0) H'(t) のディラック表示H'「D」(t)をx、pを使ってあらわせ。 (1) H' の一次でP(0→1)を計算後、摂動が適応できる条件を検討せよ。(wr<1) (2) H'の最低次でP(0→2)を計算せよ (3) wr→0の極限でのP(0→n)を、H'の最低次で求めよ。 というう問題です。 まず最初に、(1)でPを出した後摂動を適応できるかどうかは2次以降の計算をしなくてもわかるのでしょうか? どなたかにヒントをいただきたいのですが、お願いいたします。

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数476
  • ありがとう数0

みんなの回答

  • 回答No.1

P(0→1)の2次の項というのは、 基底状態から合計で2回遷移して最終的に第1励起状態にいる確率 に対応しています。 基底状態→第2励起状態→第1励起状態 のような過程が起こる確率です。 1次の項が小さいのであれば、2回(orそれ以上)も遷移するような過程も起こりにくいのが普通です。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 一次元調和振動子の範囲。

    一次元調和振動子 A*e^(-ax) を規格化したいのですか、積分範囲は[-∞、∞]ですか?それとも[0、∞]ですか?

  • 一次元調和振動子の波動関数

     <一次元調和振動子の基底状態、第一励起状態、第二励起状態の波動関数を求めよ。> という問題で、最終的にどのような形で表せばよいのでしょうか。 まだ勉強したてでよくわかりません。 最終的な形だけで良いので、教えていただけないでしょうか。 よろしくお願いいたします。

  • 三次元の調和振動子と軌道角運動量

    三次元の調和振動子の波動関数はエルミート多項式を使った一次元のと同じようなものになると思います。(違ったらいってください。) この基底状態と第一励起状態と第二励起状態の波動関数を組み合わせて、軌道角運動量の固有関数を作ることはできますか? できるならどのようにすればいいですか? お願いします。

  • 調和振動子

       D:エイチバー    α:√(mω/D)    q:αx 1次元調和振動子のn=0の場合の固有関数  φ0(x)=(mω/πD)^1/4×exp(-q^2/2)      =(mω/πD)^1/4×exp(-mωx^2/2D) を使って  位置の期待値 <x>=∫x│φ0*│^2 dx  運動量の期待値 <Px>=∫φ0*(-iDd/dx)φ0 dx  位置の二乗の期待値 <x^2>=∫x^2│φ0│^2 dx  運動量の二乗の期待値 <Px^2>=∫φ0*(-iDd/dx)^2φ0 dx の4つを計算したいのですが、ややこしくて出来ません。 どなたか、計算してみてください。 因みに、答えは『0、0、D/2mω、mωD/2』になる筈です。

  • 調和振動子の基底状態エネルギーの計算について

    調和振動子の基底状態エネルギーの計算に、α=(kμ/‘h^2)^(1/2)とcを変分パラメーターとして φ(x)=(1+cαx^2)exp(-αx^2/2)を試行関数に使うと、cはどういう値になると予想されるか。理由を述べよ。 * ‘hはのプランク定数です(=h/2π) という元は英文のマッカーリの演習問題なのですが、答えも英文で The value of c will equal zero because φ(x)=exp(-αx^2/2) is the exact form of the ground-state wave function. とあります。要するに基底状態の波動関数は上式で表されるので、それが成り立つ為にはcはゼロになるということだと思うのですが、もっとこの理由について詳しく教えてもらえないでしょうか。レポート課題の解答としてたったの2行で終わらすわけには…と苦しんでますorz どうかよろしくお願いします。

  • 摂動の問題について

    調和振動子に関して摂動項λx^3を加えると、|<m|H'|n>|^2を計算する場合、m=n+3, n+1, n-1, n-3のみ考えれば二次のエネルギー補正項が求められるようなのですが、mがこの4つに限られる理由はなんでしょうか。また、摂動項が奇関数だと一次の補正項が0になるのはなぜでしょうか。どなたか回答お願いします。

  • mathematicaでの計算

    mathematicaで微分演算子を含むハミルトニアンを独立に扱いたのですが,できるのでしょうか? 例えば,一次元調和振動子のハミルトニアンでしたら H=-d^2/dx^2+x^2 ですが,これを独立に扱って (H-E)^2*ψ などの計算をmathematicaで簡便に行いたいのですが(ここでψは簡単な指数関数,ψ=exp(-a*x^2) など),このような計算のプログラミングはどのようにすればできるのでしょうか?

  • 一次元調和振動子について

    一次元調和振動子の問題を演習して分からない問題がでてきたので質問させていただきます。 ハミルトニアンH=(-h^2/2m)d^2/dx^2+mw^2x^2/2・・・(1) Hψ=Eψのシュレディンガー方程式において (1)のハミルトニアンにポテンシャルV=αx,V=βx^2が加わったときの固有エネルギーをそれぞれ求め、このポテンシャルが加わったことで運動がどのように変化するか簡単に説明しなさい。ただしα、β>0とする。 演算子を使っていろいろ試行錯誤してみましたが、なかなか解答にたどり着けません、よろしくお願いいたします。

  • 電気双極子遷移に関する問題

    H_0=(P^2/2m)+(1/2mω_0^2X^2)の調和振動子における電気双極子遷移に関する問題です。 摂動ハミルトニアンをH'=-μE(t)とすると、摂動の最低次で<l|μ|n>≠0のときに、状態|n>と|l>の間の遷移が許される。ここで、μ=qXは電気双極子モーメントであり、初期状態が|n>のときに、どのような状態への電気双極子遷移が可能か。また、ハミルトニアンH_0に摂動項H'=λx^4を加えた場合、の新しい固有状態を|n'>とすると、初期状態が|n=8>'のとき、どのような状態への遷移が可能か。(λの一次までで考える) これはどのように考えればよいのでしょうか。どなたか、回答宜しくお願いします。 摂動項H'=λx^4を加えた場合の|n>のエネルギー固有値の変化は理解できています。

  • 調和振動子の問題

    電場(E)の中に置かれた調和振動子のハミルトニアンが H=(p^2)/2m + (mw^2x^2)/2 + qxE で与えられているとき、これが単調和振動子(simple harmonic oscillator) の問題として表すことができることを証明したいのですが、やり方がわかりません。 x coordinate を変えればいいのかな、と思うのですが、どうすればいいのかわかりません。 アドバイスお願いします。