• ベストアンサー
  • すぐに回答を!

調和振動子の固有値

壁|---○---○---|壁 上の図のように、ばね定数Kの3つのバネ3本で連結された二つの粒子(質量はともにm)の運動のうちで、バネに平行な方向の成分だけに着目して、そのハミルトニアンを     重心座標 X=(x1+x2)/2 相対座標 x=x1-x2 を用いて書き直すと H=[{-(hbar)^2/4m}(∂/∂X)^2 +KX^2]-[{(hbar)^2/m}(∂/∂X)^2 + 3Kx^2/4}] となる。 ここから固有値を求めるわけですが、解説には 重心運動は 質量 2m ばね定数 2K 相対運動は 質量 m/2 ばね定数 3K/2 となってωo=√(K/m) ω=√(3K/m) 固有関数は、それぞれの固有関数の積、固有値は和であらわされるから、 εNn=(N+1/2)(hbar)ωo + (n+1/2)(hbar)ω と書いてあります。 ここで二つ質問があって、 (1)重心運動のばね定数が 2K 相対運動の 質量 m/2 ばね定数 3K/2   という風にどうして表されるのか、 (2)なぜ調和振動子の固有値はそれぞれの和で表されるのか というのが分かりませんでした。 どなたかご教授ください。お願いします。

共感・応援の気持ちを伝えよう!

  • 物理学
  • 回答数3
  • 閲覧数1054
  • ありがとう数1

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.3
noname#176692
noname#176692

あと、(1)の方ですね。元々のシュレディンガー方程式(1次元、時間に依存しない)ではH={-(hbar)^2/2m}(∂/∂x)^2 +(kx^2)/2となります。 定数をm=2m、k=2Kとすれば、今考えているハミルトニアンの重心運動分となるからです。相対運動分も同様です。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

なるほど! そういうことだったのですね! 固有値がそれぞれの和で表わされるのも数式をみて納得することが出来ました。 ありがとうございました。

その他の回答 (2)

  • 回答No.2
noname#176692
noname#176692

行列で言う固有値を、例えばA+B=CとしてCφ=λφとした場合を実行すればいい。 Aの固有値をa、Bの固有値をb、a+b=λとすれば、 Cφ=(A+B)φ=Aφ+Bφ=aφ+bφ=(a+b)φ=λφ となる。つまり、固有値の和。 ハミルトニアンも線形演算子のみで構成されている(中の形も非線形ではない)ため、行列と同様に考えられます。

共感・感謝の気持ちを伝えよう!

  • 回答No.1
noname#176692
noname#176692

>H=[{-(hbar)^2/4m}(∂/∂X)^2 +KX^2]-[{(hbar)^2/m}(∂/∂X)^2 + 3Kx^2/4}] ハミルトニアンが線形結合で表されているからです。

共感・感謝の気持ちを伝えよう!

質問者からの補足

返答ありがとうございます。 ということは固有値がそれぞれの和でかけるというのは、調和振動子特有の事ではないということでよろしいのでしょうか?

関連するQ&A

  • 自動車の固有振動数について

    自動車の固有振動数の式について調べていると、以下の2つの式が出てきました。 この2つの式の違いがいまいちわかりません。 どなたか分かる方お願いします。 f=(1/(2*π))*√((9800*k/m)) (k:バネのバネ定数、m:車両質量) f=(1/(2*π))*√((2*(kf+kr)/m)) (kf:フロントのばね定数、kr:リアのばね定数、m:車両質量)

  • 振動の問題です

    以下の問題を自分で解いてみました 答えはあっていますか?  図のように、質量mの質点が、ばね定数kの二つのばね、および減衰係数cのダッシュポットに支えられている。ばねの質量は無視できるとして、以下の設間(1)~(4)に答えなさい。 (1)つりあい位置からの質点の変位をx(t)として、この系の運動方程式を求めなさい (2)c=0のときの系の固有円振動数ωoを求めなさい。 (3)この系の臨界減衰係数c_cを求めなさい。 (4)初期変位x(0)=x。、初期速度dx(0)/dt(0)=0が与えられたときの系の自由振動を求めなさい。 (1)md^2x(t)/dt^2=-cdx(t)/dt-kx(t) (2)ω。=√k/m (3) ζ=c/c_c 臨界減衰なのでζ=1 ∴c_c=c (4) (1)の微分方程式を解くと x(t)=-ctx(t)/m-kx(t)t^2/2m+x。t+x。

  • 単振動の解

    自然の長さl, ばね定数k のばねの下端に質量mの質点をつるす。上端を鉛直方向に動かし、変位がacosωtとなる振動を与える。運動方程式の解を求めよ。ただし、ω≠√(k/m) とする。 という問題で、鉛直方向に動かしている時の質点の自然長からの変位をxとすると、 mx''=-kx + mg となるので 解は、 x=Acos(ω0t+α) + mg/k だと思ったのですが、 答えは x=Acos(ω0t+α) +{aω0^2cosωt/(ω0^2 - ω^2)} + l + (mg/k) となっていました。 変位を acosωt にするということが関係すると思うのですが、どう扱えば良いのかよく分かりません。 なぜこうなるのでしょうか?

  • 物体に摩擦力が働く調和振動

    <<問題>> 水平な床の上を、ばね定数kのばねで繋がれた質量mの物体が運動する場合を考える。ばねの自然の長さからの変位をxとし、x軸を右方向が正となるように選ぶことにする。時刻t=0においてx=X(X≧0)で静かに手を離す場合の物体の運動について、次の問いに答えなさい。動摩擦係数をμ 重力加速度をgとする。 摩擦力が働いている場合、運動方程式は非同次方程式となる。その特別解をx=Aの形に仮定し,xが解となるようにAをμ,g,m,kで表しなさい。 <<解法>> 摩擦力が0の場合の一般解を求めて、それを摩擦力≠0の時の運動方程式に代入していくと  2 mω (Acosωt+Bsinωt)=-k(Acosωt+Bsinωt)+F ここまでは分かるのですが、ここからどのようにして Aを表していけばいいかがわかりません。 お願いします。

  • 物理

    物理力学の問題 図のような質量が4mと3mの質点が自然長lのばね(バネ定数k)によって 水平なX軸上を振動しながら動いている。相対座標をxとする。 1相対運動の運動方程式をあたえ、各振動数ωをもとめよ 2t-=0 x=l/2 dx/dt=l/2ω のとき 解 x(t)=l+Acosωt+Bsinωt の未知数A,B,を求めよ 3 相対座標をx、 相対速度をvとして任意の時間における相対運動エネルギー保存則を与えよ

  • バネの固有振動数を求める問題が分かりません。

    バネの固有振動数を求める問題が分かりません。 下の図の(a)~(d)に示す系の固有振動数を求める問題が分かりません。ばね x=Ae^jωtと置いて計算していき (a)は多分 ω=√(k1/m) となり f=1/2π・√(k1/m) になりました。 (b)も同様に ω=√{k1k2/m(k1+k2)} となり f=1/2π・√{k1k2/m(k1+k2)} (c)(d)が分かりません。 よろしくお願いします。

  • 単振動の問題

    大学1年の力学でわからない問題があるので教えて下さい。 ------------------------------------------------------------ バネ定数kのバネの一端を壁に固定し、他端に質量Mの 物体Aを結び付け、滑らかな水平面上においた。さらに 質量mの物体BをAに押し付け、バネを自然の長さから Lだけ縮めて手を離した。物体の大きさ、バネの質量は 無視できるものとする。 1.物体Bが物体Aから離れる点はどこか?  その点に達する時間はいくらか? 2.1.の時の物体Bの速さを求めよ。 3.物体Bが離れた後、物体Aはどのような運動をするか?  運動する範囲および周期的運動の場合はその周期を記せ。 ------------------------------------------------------------ 運動方程式は (m+M)d^2x/dt^2=-kx で d^2x/dt^2=-ω^2x ω=√(k/(m+M)) ここまではできたのですが1~3の問題の考え方が わかりません。(ここまでも間違っていますか?) よろしくお願いします。

  • 強制振動についての質問です。

    質量mの物体がばね定数kのばねにつながれ、調和外力Fcosωtを与えられた時の強制振動の解を求めよ、ω=(k/m)^1/2とするという問題です。 いつもは特解をAcosωtと仮定して、運動方程式に代入するのですが、この問題はωが(k/m)^1/2となっているのでA=F/(k-mω^2)としたとき振幅が共振したようになりどのように解答すればよいかわかりません。 どのようにしてこの問題は解くのでしょうか、お力添えお願いします。

  • 振動です

    図のように、2つのばねk1,k2と2つの質量m1,m2がとり付けられています。xo(t)=Xosinωtで支持部が変位するとき (1)この振動系の運動方程式を導出しなさい 私の回答 m1(d^2 x1 /dt^2)=-k1(x1-xo)+k2(x2-x1) と m2(d^2 x2 /dt^2)=-k2(x2-x1) (2)k1=2k , k2=k ,m1=m ,m2=m/2 の時、設問(1)の運動方程式はどう書き直せるか。ωo=√(k/m)を用いて記述せよ 私の回答 (d^2 x1 /dt^2)=-2(ωo^2)(x1-xo)+(ωo^2)(x2-x1) (d^2 x2 /dt^2)=-2(ωo^2)(x2-x1) (3)ωo=1rad/sのとき、設問(2)の運動方程式を用い、固有角振動数ωnを求めよ。 この問題を見た瞬間、あれωoが(不減衰)固有角振動数でないの?って思いました。ωoとωn何が違うのですか? それと設問(1)(2)は正しいですか?教えてください

  • 物理 単振動

    ばね定数kのばねに質量mの小球をつけ、水平で滑らかな床の上に置き、ばねの他端を固定した。小球は質点とする。次に小球を手でつかみ、ばねを伸ばして手を離したところ、小球は単振動した。ばねの長さに沿った方向をx軸として振動の中心を原点とする。このとき、小球の運動方程式はm((d^2x)/(dt^2))=ーkxと書ける。小球の変位はこの運動方程式の解として与えられx=Asinωt+Bcosωtと書ける。ただし、ωは角振動数であり、A,Bは初期条件で決定される定数とする。 (1)運動方程式よりx=Asinωt+Bcosωtを導出せよ。 (2)解を運動方程式に代入するとωをmとkで表すことができる。その式を求めよ。 (3)小球は時刻t=0のとき、原点x=0を速度voで通過した。この時の、AとBを求めよ。 (4)ばね定数kおよびばね定数2kのばねを小球の両側に一直線となるようにつけ、それぞれのばねが自然の長さとなった状態で固定した。次に小球を手でつかみ、ばねの長さに沿って移動させて手を離したところ、小球は単振動した。ばねの長さに沿った方向をx軸として、振動の中心を原点とする。このときの運動方程式を求めよ。 特に(3),(4)がわかりません。(1)~(4)どれでも構いませんので回答よろしくお願いします。 もちろん、(1)~(4)を教えてくださると大変助かります。 よろしくお願いします。