• 締切済み
  • すぐに回答を!

物理

物理力学の問題 図のような質量が4mと3mの質点が自然長lのばね(バネ定数k)によって 水平なX軸上を振動しながら動いている。相対座標をxとする。 1相対運動の運動方程式をあたえ、各振動数ωをもとめよ 2t-=0 x=l/2 dx/dt=l/2ω のとき 解 x(t)=l+Acosωt+Bsinωt の未知数A,B,を求めよ 3 相対座標をx、 相対速度をvとして任意の時間における相対運動エネルギー保存則を与えよ

共感・応援の気持ちを伝えよう!

みんなの回答

  • 回答No.1
  • SKJAXN
  • ベストアンサー率72% (52/72)

1.まず絶対座標系で運動方程式を立ててみましょう。4mの絶対座標をXa、3mの絶対座標をXbとおきます。4m側の運動方程式は、 4m*(d2/dt2)Xa=k*(Xb-Xa-l) →{1} 3m側の運動方程式は、 3m*(d2/dt2)Xb=-k*(Xb-Xa-l) →{2} ※ テキスト入力であるため、物理量Xの2階微分の表記を(d2/dt2)Xとしました。 相対座標xは、x=Xb-Xa であるため、この両辺の2階微分を行うと、 (d2/dt2)x=(d2/dt2)Xb-(d2/dt2)Xa →{3} 式{1},{2}を{3}に代入すると、 (d2/dt2)x=-(1/3+1/4)/m*k(x-l) ⇔ 12/7*m*(d2/dt2)x=-k(x-l) // →{4} ※ ちなみに 12/7*m のことを「換算質量」と言います。2つの物体の質量がm,Mである場合、換算質量uは、1/u=1/m+1/M で求められます。 式{4}より、 (d2/dt2)x=-(7/12)*(k/m)*(x-l)=-ω^2*(x-l) よって、ω=√((7/12)*(k/m)) // 2.x(0)=l+A*cos(0)+B*sin(0)=l+A=l/2 より、A=-l/2 // (d/dt)x(t)=-A*ω*sin(ω*t)+B*ω*cos(ω*t) ※ テキスト入力であるため、物理量Xの1階微分の表記を(d/dt)Xとしました。 (d/dt)x(0)=-A*ω*sin(0)+B*ω*cos(0)=B*ω=l/2*ω より、B=l/2 // 3.(1/2)*(12/7*m)*((d/dt)x(0))^2+(1/2)*k*(x(0)-l)^2=(1/2)*(12/7*m)*v^2+(1/2)*k*(x-l)^2 ⇔ (1/4)*k*l^2=(6/7)*m*v^2+(1/2)*k*(x-l)^2 // いかがでしょう?

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 単振動の解

    自然の長さl, ばね定数k のばねの下端に質量mの質点をつるす。上端を鉛直方向に動かし、変位がacosωtとなる振動を与える。運動方程式の解を求めよ。ただし、ω≠√(k/m) とする。 という問題で、鉛直方向に動かしている時の質点の自然長からの変位をxとすると、 mx''=-kx + mg となるので 解は、 x=Acos(ω0t+α) + mg/k だと思ったのですが、 答えは x=Acos(ω0t+α) +{aω0^2cosωt/(ω0^2 - ω^2)} + l + (mg/k) となっていました。 変位を acosωt にするということが関係すると思うのですが、どう扱えば良いのかよく分かりません。 なぜこうなるのでしょうか?

  • 強制振動

    壁にばね定数kのばねを取り付け、ばねのもう一方の端には質量mの 質点を取り付けます。壁は、y=acosωtで調和変位します。   | 壁|--/\/\/--○   |   ばね   質点 上図のような感じになっています。 このときの質点の強制振動の解は、(水平右方向をx軸の正として) x=kacosωt/(k-mω^2)となりますが(k≠mω^2のとき)、 ここでk=0とすると、x=0となってしまいます。 こうすると壁が変位しているのに質点は変位しないということになり おかしくなってしまいます。 たぶんどこかで私の考えがおかしいのだと思いますが、どこがおかしいのでしょうか? 強制振動の解xが、壁に対する相対変位だということならば k=0のときx=0でも違和感はないのですが・・・

  • 大学 基礎物理A

    フックの法則が苦手です 解答の途中経過もよろしくお願いします 質量m の質点が、フックの法則にしたがって一方向のみに伸び縮みするばねからの力Fk、質点の速度 v(t) に比例する抵抗力Fv = -2mγ v(t)、および、角振動数Ω で周期的に変動する力Fp を受けてx 軸 上を運動しているとする。このとき、以下の問に答えよ。ただし、ばねが自然長の状態のときに質点がある 位置を原点に、ばねが伸びる向きをx 正の向きに選ぶこととする。また、ばねのばね定数はmω2 である とし、ω、γ、Ω はいずれも正の定数で、ω > γ であるとする。 1. 質点の位置ベクトルをr(t) とし、Fk、Fv、および、Fp を用いて、この質点の運動方程式をベクト ルの方程式として書け。(成分表示ではなく、Fk、Fv、Fp をそのまま含む式を書くこと。) 2. 質点がx 軸上のみを運動することに注意し、質点のx 座標x(t) とばね定数mω2 を用いて、Fk を 成分表示せよ。 3. F0 を定数として、Fp が(F0cosωt,0,0) と成分表示されるとするとき、運動方程式から、質点のx座標x(t) が満たす微分方程 を書き下せ。

  • 物理(衝突) 教えてください

    ばね(自然長l、ばね定数k)でつながれた質量m1の質点Bと質量m2の質点Cがなめらかで水平な床の上に静止している。床上を速度v0で滑ってきた質量m0の質点Aが質点Bに衝突(弾性衝突)した。 (1)質点B,Cの重心の座標Xとばねの伸びYは? (2)XとYを満たす方程式は? (3)初期条件はt=0のときx1=0、x2=およびx1''=v1,x2''=0 X(t),Y(t)は? (4)質点B、Cを質量m1+m2の1つの物体とみなしたとき、質点Aとこの物体との跳ね返り係数eは?この値は1より小さくなる。 質点Aが持っていた運動エネルギーの一部が質点B、Cからなる質点系の(  )の運動のエネルギーに使われるからである。(  )に当てはまる言葉は? 質点B、Cについての運動方程式は、 mx1''=k(x2-x1-l) mx2''=-k(x2-x1-l)と求めました。 (3)はX=(x1+x2)/2,Y=(x1+x2-l)/2と考えましたが、間違っている場合ご指摘お願します。

  • 物理です

    ばね定数がkのばねを鉛直方向に吊り、下側の端に質量mの質点をつけたら、x0(エックスゼロ)だけ下に伸びて質点は静止した。 重力加速度をgとして以下の問に答えなさい。なお、鉛直下向きの単位ベクトルをiベクトルとすること。 1)x0だけ下に伸びて質点は静止したという条件を、問題文中の記号で表し、その条件式からばね定数kを問題文中の他の記号で表せ。  次に静止した状態からさらにばねを伸ばし、位置x=x0+Aで速さが0となるようにそっと質点を放したところ、質点は鉛直方向に振動し始めた。質点を放した時刻をt=0として、以下の問に答えよ。 2)振動している質点の位置がx0+x(t)(ばねの伸びがx(t))と表される時刻tでの質点の運動方程式を、最終的な答えにX0やgを用いず、加速度の大きさaとして、ベクトル表現で答えなさい。 3)この質点の運動の運動方程式が単振動運動することを表す微分方程式と等しくなることを示しなさい。 4)3)の微分方程式を解き、問題文中の初期条件を考慮して、この質点の位置y(t)=x0+x(t)を時間tの関数として表しなさい。

  • 物理について

    ばね定数がkのばねを鉛直方向に吊り、下側の端に質量mの質点をつけたら、x0(エックスゼロ)だけ下に伸びて質点は静止した。 重力加速度をgとして以下の問に答えなさい。なお、鉛直下向きの単位ベクトルをiベクトルとすること。 1)x0だけ下に伸びて質点は静止したという条件を、問題文中の記号で表し、その条件式からばね定数kを問題文中の他の記号で表せ。  次に静止した状態からさらにばねを伸ばし、位置x=x0+Aで速さが0となるようにそっと質点を放したところ、質点は鉛直方向に振動し始めた。質点を放した時刻をt=0として、以下の問に答えよ。 2)振動している質点の位置がx0+x(t)(ばねの伸びがx(t))と表される時刻tでの質点の運動方程式を、最終的な答えにX0やgを用いず、加速度の大きさaとして、ベクトル表現で答えなさい。 3)この質点の運動の運動方程式が単振動運動することを表す微分方程式と等しくなることを示しなさい。 4)3)の微分方程式を解き、問題文中の初期条件を考慮して、この質点の位置y(t)=x0+x(t)を時間tの関数として表しなさい。 詳しく教えていただけると助かります。 よろしくお願いします。

  • 物理 単振動

    ばね定数kのばねに質量mの小球をつけ、水平で滑らかな床の上に置き、ばねの他端を固定した。小球は質点とする。次に小球を手でつかみ、ばねを伸ばして手を離したところ、小球は単振動した。ばねの長さに沿った方向をx軸として振動の中心を原点とする。このとき、小球の運動方程式はm((d^2x)/(dt^2))=ーkxと書ける。小球の変位はこの運動方程式の解として与えられx=Asinωt+Bcosωtと書ける。ただし、ωは角振動数であり、A,Bは初期条件で決定される定数とする。 (1)運動方程式よりx=Asinωt+Bcosωtを導出せよ。 (2)解を運動方程式に代入するとωをmとkで表すことができる。その式を求めよ。 (3)小球は時刻t=0のとき、原点x=0を速度voで通過した。この時の、AとBを求めよ。 (4)ばね定数kおよびばね定数2kのばねを小球の両側に一直線となるようにつけ、それぞれのばねが自然の長さとなった状態で固定した。次に小球を手でつかみ、ばねの長さに沿って移動させて手を離したところ、小球は単振動した。ばねの長さに沿った方向をx軸として、振動の中心を原点とする。このときの運動方程式を求めよ。 特に(3),(4)がわかりません。(1)~(4)どれでも構いませんので回答よろしくお願いします。 もちろん、(1)~(4)を教えてくださると大変助かります。 よろしくお願いします。

  • 物体に摩擦力が働く調和振動

    <<問題>> 水平な床の上を、ばね定数kのばねで繋がれた質量mの物体が運動する場合を考える。ばねの自然の長さからの変位をxとし、x軸を右方向が正となるように選ぶことにする。時刻t=0においてx=X(X≧0)で静かに手を離す場合の物体の運動について、次の問いに答えなさい。動摩擦係数をμ 重力加速度をgとする。 摩擦力が働いている場合、運動方程式は非同次方程式となる。その特別解をx=Aの形に仮定し,xが解となるようにAをμ,g,m,kで表しなさい。 <<解法>> 摩擦力が0の場合の一般解を求めて、それを摩擦力≠0の時の運動方程式に代入していくと  2 mω (Acosωt+Bsinωt)=-k(Acosωt+Bsinωt)+F ここまでは分かるのですが、ここからどのようにして Aを表していけばいいかがわかりません。 お願いします。

  • 振動力学の問題が分からないので教えてください

    図に示す位置Bの物体がxb=bsinωtとなる水平振動をしている。図中mは質点の質量cはダッシュポットの粘性減衰係数k1,k2はそれぞればね定数を表す。位置Aの質点は摩擦なしで水平運動することができる。 (1)この系の振動方程式を求めよ (2)この系に減衰がないとした時の非減衰固有円振動数を求めよ 本当に分からなくて困っているので教えていただけると助かります。

  • バネ問題

    質量がmで車体長さがσであるような台車を用意し、前後にそれぞれ1つずつバネを取り付ける。さらに、位置x=0およびx=Lに壁を 設置し、それぞれのバネの端を壁に結びつける。バネはHookeの法則に完全に従う理想的なバネで、台車の運動は完全に水平かつ一次元的だとする。また摩擦は無視できるものとする。 (a)バネの自然長をλとし(バネは二つとも同じ性質を持つとする)、またσ+2λ>Lとする。系がつりあいの状態にあるときの台車の位置を求め(台車の端の座標でも中心の座標でも良いが、どちらなのか明記すること)、また、このときのバネの張力の大きさを求めよ。 (b)つりあいの位置からの変位をqとして台車の運動方程式を立て、 qのついての常微分方程式の形にまとめよ。 (c)初期条件を t=t0のとき q=q0, dq/dt=v0とする。 この振動の振幅を求めよ。 (d)もし片方のバネがなかったとすると(例えば前側のバネだけあって後ろのバネがなかったら)、振動周期にはどのような違いが生じるか考察せよ。第2のバネがある場合とない場合とでは、振動は どちらが速くなるか?(計算結果に基づいた説明でも物理的な描像 に基づいた考察でも、どちらでもよいが、とにかくなんらかの根拠に基づいて答えること)。 [自分の解答]と質問 (a)バネ定数をkとする。 つりあいの位置xとすると  k(x-λ)=k(L-x-λ) ∴x=L/2 ここまではいいのですが、「(台車の端の座標でも中心の座標でも良いが、どちらなのか明記すること)、また、このときのバネの張力の大きさを求めよ。」 という所がどうなるのか教えてほしいです。 (b) 常微分方程式の形で表すと   m*d^2q/dt^2+2kq=0になります。 (c) (b)にq=exp(λt)を代入して 一般解を求めると q=Acos[√(2k/m)]*t+Bsin[√(2k/m)]*tとなる 初期条件より q0=Acos[√(2k/m)]*t0+Bsin[√(2k/m)]*t0 …(1)式 v0=-√(2k/m)*Asin[√(2k/m)]*t0+√(2k/m)*Bcos[√(2k/m)]*t0 …(2)式 この(1)と(2)よりどやって振動の振幅をもとめるのか分からないので教えてください。 (d)この問題が自分で考えても全くわからないので、 教えてほしいです。 長々と書いてしまってすいません。 これらが分からないので教えてもらえればうれしいです。