• 締切済み
  • すぐに回答を!

調和振動子の状態和について

s個の調和振動子についての状態和が G(E)=E^s/(s!Σhνi ) と書けるのはなぜでしょうか? なぜs!でわるのかがわかりません。(1個の調和振動子の場合に関しては理解できました) また、3原子分子の場合s=3で計算してよいのでしょうか? 回答よろしくお願いします。

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数204
  • ありがとう数0

みんなの回答

  • 回答No.1

G(E)はエネルギーE以下の状態の数という事でいいですか?(状態和というと分配関数のことをさすと思いますが・・・) そうであれば、G(E)=E^s/(s!Πhνi)では? (ΣをΠとしました)

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 3次元の調和振動子について、

    3次元の調和振動子について、 アインシュタイン模型では、3次元の調和振動子がN個ある系は、独立な3N個の1次元調和振動子を考えればよいと書いてあったのですが、それはなぜですか?

  • 調和振動子の状態数

    自由粒子の状態数の求め方は分かるのですが、調和振動子の場合が解けません。 問1、1個の1次元調和振動子のエネルギーEが0<E<E0である微視的状態数を求めよ。 問2、N個の3次元調和振動子が体積Vの断熱的な箱に閉じ込められている。エネルギーがEが0<E<E0である微視的状態数を求めよ。 問2であれば系のエネルギーEをpで表し、運動量空間におけるそのエネルギーE以下の領域の体積を求める。これに座標空間での体積Vを掛けてh^3Nで割った値が微視的状態数として求まると思います。自由粒子であれば分散関係E=Σ(p)^2/(2m)と表せますが、調和振動子の場合はE=Σ(n+1/2)h'ωと表されるので、これをどうやって運動量空間で考えればいいのでしょうか。 また問1に至っては体積など領域が指定されていないので、状態数が求まらないように思えます。 上の問題は本の章末問題なのに略解すら載っていないのでかなり困っています。解答ではなく問題の具体的な解き方・考え方でもいいのでどなたか解説を頂けると有り難いです。

  • 片調和振動子の問題

    ポテンシャルがV(x)=∞(x<0), v(x)=(1/2)Cx^2(x>0)で与えられるとき、 (a)この系の定常状態のときに許される波動関数と、同じ質量m,定数Cを持った普通の調和振動子と比較するとどうなるか。 (b)片調和振動子の許される量子化されたエネルギーはいくらか。 (c)この量子化された系のマクロな古典的モデルは何か。 どなたか考え方を教えてください。お願いします。

  • 調和振動子の問題

    電場(E)の中に置かれた調和振動子のハミルトニアンが H=(p^2)/2m + (mw^2x^2)/2 + qxE で与えられているとき、これが単調和振動子(simple harmonic oscillator) の問題として表すことができることを証明したいのですが、やり方がわかりません。 x coordinate を変えればいいのかな、と思うのですが、どうすればいいのかわかりません。 アドバイスお願いします。

  • 調和振動子って何?

    解析についてなんですけど、調和振動子とはなんですか?大学の授業ではあまりふれていないし、図書館にもそれらしい本がありませんでした。 文献、具体例などをあげていただけないでしょうか

  • 調和振動子の素朴な疑問

    あたりまえ過ぎてか、本で調べても載ってないのですが、 1次元調和振動子シュレディンガー方程式の 波動関数はなぜガウス関数みたいな形なのですか? これは推測と実験による仮定なのですか? あとこの振動子の生成消滅演算子の関数は どうやって求めたものなのでしょうか? どなたか答えて頂ければありがたいです。 どうかよろしくおねがいします。

  • 調和振動子の分極

    等方的な3次元の調和振動子に一様電界をz方向にかけたときの、振動子の分極率の求め方を教えてください。 よろしくおねがいします><

  • 調和振動子

       D:エイチバー    α:√(mω/D)    q:αx 1次元調和振動子のn=0の場合の固有関数  φ0(x)=(mω/πD)^1/4×exp(-q^2/2)      =(mω/πD)^1/4×exp(-mωx^2/2D) を使って  位置の期待値 <x>=∫x│φ0*│^2 dx  運動量の期待値 <Px>=∫φ0*(-iDd/dx)φ0 dx  位置の二乗の期待値 <x^2>=∫x^2│φ0│^2 dx  運動量の二乗の期待値 <Px^2>=∫φ0*(-iDd/dx)^2φ0 dx の4つを計算したいのですが、ややこしくて出来ません。 どなたか、計算してみてください。 因みに、答えは『0、0、D/2mω、mωD/2』になる筈です。

  • 一次元調和振動子の範囲。

    一次元調和振動子 A*e^(-ax) を規格化したいのですか、積分範囲は[-∞、∞]ですか?それとも[0、∞]ですか?

  • 分配関数(状態和)がわかりません。

    統計力学とかで出てくる分配関数(状態和)がありますが、物理的な意味がよくわかってません。 Σexp(-β・ei)とありますがどういう意味なんでしょうか? またある問題でエネルギー準位ε=(n+1/2)hνのN個の独立な調和振動系子の系があり この調和振動子一個に対する状態和が Z=1/{2sinh(hν/2kB・T)} となることを示せという問題があるんですが問題の意味すらよくわかりません。 一個に対する状態和?という感じです。 どうかお願いします。