• ベストアンサー

フェルミ順位について教えてください!

フェルミ・ディラックの統計でT>0の場合、フェルミ順位が0Kの場合より少し小さくなるのはなぜなんでしょうか?またそれはどのような現象がおこっているのでしょうか?

  • 1025
  • お礼率68% (15/22)

質問者が選んだベストアンサー

  • ベストアンサー
  • Umada
  • ベストアンサー率83% (1169/1405)
回答No.1

Fermi準位はエネルギーをEとして分布関数をf(E)、状態密度関数をZ(E)とエネルギーの関数で表したときに、 ∫f(E) Z(E) dE=n   (1) という正規化条件を課して初めて決まります。積分はEについて-∞から∞まで取ります。nは系の電子の総数です。 さて、いま一番単純な金属のモデルで考えます。内部のポテンシャルはどこでも一定とします。 この場合、単位体積・単位エネルギー領域あたり収容できる電子の数(状態密度)は Z(E)=(4π/h^3) (2m)^(3/2) E^(1/2)   (2) と表されます。hはPlanck定数、mは電子の質量です(この式の導出が必要でしたら、お手数ですがご自分で固体物理の教科書を読んでみてください)。 複雑そうな式ですが、とりあえず注目頂きたいのはZ(E)がエネルギーEについて単調増加関数になっているということです。 さて次に、温度が絶対零度からわずか上がった場合の分布関数f(E)の変化について考えます。絶対零度の時のFermi準位をEF0とおきます。 いまこの系の温度をわずかだけ上げたとします。Fermi準位は温度を上げたことにより結局は変化するのですが、とりあえず「Fermi準位が変化しなかったら」と考えてあとで矛盾を導くことにします。 分布関数を図に描くと(B)のようになります。いままで(A)のように絶壁だった分布関数が、角が少しとろけた形になります。 (A)絶対零度での分布関数 ↑分布関数f(E) | |1 |■■■■■ |■■■■■ |■■■■■ |■■■■■ |■■■■■ └────-+─────→      EF0 (B)ある有限温度での分布関数(とりあえず、Fermi準位は不変) ↑分布関数f(E) | |1 |■■■  ←「とろけた」分 |■■■■■ |■■■■■ |■■■■■ |■■■■■■■←「溜まった」分 └────-+─────→      EF0 EF0よりΔE(>0)だけ高いエネルギーEに対して分布関数、すなわち占有確率は 1/{1+exp((EF0-E)/kT)} =1/{1+exp(-ΔE)/kT)}   (3) となります。Tは絶対温度、kは言うまでもなくBoltzmann定数です。 一方、EF0よりΔE(>0)だけ低いエネルギーEに対して 1/{1+exp((EF0-E)/kT)} =1/{1+exp(ΔE)/kT)}   (4) となります。 次に1から(4)を引きます。この差分は各エネルギーごとに、温度が上がったことによってE>EF0の領域に移った電子の割合(注:あくまで占有確率であって、電子の個数そのものでない)に相当します。これは 1-1/{1+exp(ΔE)/kT)}=exp(ΔE)/kT)/{1+exp(ΔE)/kT)}  =1/{1+exp(-ΔE)/kT)}   (5) となって(3)と同じになります。 これが何を意味するかと言うと、図(B)で「とろけた右上の角」と、「とろけた分が溜まった、右下の隅」は点(EF0, 1/2)を中心に点対称の形状になっているということです。 さて、Fermi準位を決めるためには再度 ∫f(E) Z(E) dE=n   (1) に登場願わねばなりません。 いまE=EF0付近についてのみ、絶対零度の場合との違いを考えます。 -f(E)の「とろけた」分と「溜まった」分は点対称で同じ形状である。 -Z(E)は温度によって変化しない -Z(E)は単調増加関数である ということを考えると、 EF0        ∞ ∫{1-f(E)} Z(E) dE<∫f(E) Z(E) dE   (6) -∞        EF0 であることが分かると思います。(C)をご覧下さい。 (C)分布関数と実際の電子の個数 ↑分布関数f(E) | |1 |■■■□□←「とろけた」分(この分減った) |■■■■■ |■■■■■ |■■■■■ |■■■■■■■←「溜まった」分(この分増えた) └────-+─────→      EF0 ↑状態密度関数Z(E)・・・E^(1/2)に比例 | | |      ■■ |    ■■■■ |  ■■■■■■ | ■■■■■■■ |■■■■■■■■ └────-+─────→      EF0 ↑電子の個数f(E)×Z(E)の、絶対零度の時との差異(EF0は不変と仮定) | | | | |   |      ■  |     ■■←増えた分 └────-+─────→     □□←減った分      EF0 (6)の左辺は「温度を上げたことで、E<EF0の領域からいなくなった電子の数」を表します。右辺は「温度を上げたことで、E>EF0の領域に出現した電子の数」を表します。 本来なら両者は等しくならなければならないのですが、(6)では右辺の方が大きくなってしまいます(Z(E)が単調増加関数だから)。これは明らかに矛盾です。なぜ矛盾が生じたかと言うと、Fermi準位EFが温度により不変、としたからです。 実際にはZ(E)が右上がりである分だけ、EFを少し小さくして帳尻(系の全電子数が不変)を合わせなくてはならず、これがEFがわずか小さくなる理由です。もっとも電子自体は帳尻を合わせようとしているわけではなく、電子が自然の摂理に従って振舞えば自然にそうなるだけ、と言った方がよいかも知れません。 「全電子数不変」の条件を課して改めて計算し直すと EF≒EF0[1-(π^2/12)(kT/EF0)^2]   (7) なる関係が得られます(ただし、kT<<EFが満たされるという条件で)。温度の上昇とともにEFはわずか小さくなるわけです。具体的にどんな現象がおきているか、とまで問われると難しいですね。「世の中はそのようにできている」としか答えにくい部分です。 上記の説明では私も間違った理解をしている部分があるかも知れません。皆様のご意見・ご指摘を有り難くお受けします。

1025
質問者

お礼

とても丁寧な説明ありがとうございました。よくわかりました。

関連するQ&A

  • フェルミ順位って何ですか?

    フェルミ順位って何ですか?

  • フェルミ粒子とボーズ粒子

    フェルミ粒子とボーズ粒子について調べてるために、いろいろな文献を読んではみたですが「フェルミ分布ディラック」「ボーズアインシュタイン分布」というのがどのように関係しているのか分からなく、行き詰まってしまいました。 フェルミ粒子とボーズ粒子を量子統計力学を用いて示すとなるとどのように説明すればいいのでしょうか? 分かる方がいましたらよろしくお願いします。

  • フェルミ準位について

    フェルミ・ディラックの分布関数は f(E)=1/{exp(E-EF/kT)+1}である。 1)Ef/k=5×10^4、T=5×10^2K とするならば -∂f/∂E と E/k の関係をグラフに書け。 2)E=Ef+δ とすると   f(δ)=1-f(-δ) である。これを証明せよ。 1)は f(E) を微分して ∂f/∂E=-1/4kT まではできたんですけど、そこからどうやったらいいのかわかりません。 固体物理学の本を見ても証明とかは省いてあってできないんです。 どちらかひとつだけでもいいので教えてください。お願いします。

  • フェルミディラック分布則と電子の個数

    各エネルギー値の電子が存在する確率はフェルミディラック分布の形に従いますが、その確率が高ければそのエネルギーを持つ電子の数も多いという事になりますか? フェルミディラック分布関数f(ε,T)自体はあくまで確率分布なので縦軸の最大値は1であり電子の個数を表してるわけではありません。しかしエネルギーの低い所から電子が満たされていくので、金属固体などではエネルギーが低い電子は価電子帯に多く存在し、電流となる自由電子は伝導帯、つまりフェルミ準位付近の僅かな電子しか電流に寄与しません。よってエネルギーが大きくなればそのエネルギーを持つ電子の数も段々少なくなると思います。厳密にエネルギーとそれに対応する電子の個数との関係がフェルミディラック分布関数のようになるのかという意味ではありませんが、エネルギーの低い電子はそれだけ数が多く、エネルギーが高くなればなるほどエネルギーの高い電子の個数もどんどん少なくなっていくという事でしょうか?

  • フェルミ温度

    現在、金属結晶におけるゾンマーフェルト理論を勉強しています。 そこで質問なんですが、N電子系で、T=0においてエネルギーが低い準位から電子を詰めて行き、一番大きなエネルギーを持つ電子のエネルギーをフェルミエネルギーとする。 そして、それに伴ってフェルミ運動量、フェルミ波数ベクトル、フェルミ速度などを定める。 と、ここまでは理解できるのですがフェルミ温度ってのは何でしょうか? T=0の時の温度?? (1)これは、フェルミエネルギーが全て熱になったと仮定するときの温度という解釈でよろしいでしょうか? (2)フェルミ温度は約10000Kということですが、(1)の解釈が正しいとするとこのフェルミエネルギーは熱以外のどんなエネルギー形態になっているのでしょうか?T=0においても光の1%近くの速さで運動してるとか?でも、それだと結局膨大な熱を生み出しそうな気も。 (3)フェルミ運動量、フェルミ波数ベクトル、フェルミ速度についても、フェルミエネルギーを持つ電子の運動量、波数ベクトル、速度と単純に捉えてしまってよいのか? 混乱しているために質問がぼんやりしててスミマセン。1つでも分かる方よろしくお願いします。

  • pn接合の電流とフェルミ順位

    p型半導体とn型半導体を接合すると(実際には正しくないですが、この言い方でご了承ください) 最初、拡散電流とドリフト電流が釣り合うところまで電流が流れますよね。 で、平衡状態では、電流はもちろんゼロ、また、p型のフェルミ順位もn型のフェルミ順位も一致する。 それで、 「Jp=qμpF-qDdp/dxがゼロになることを示せ」 (Jp:pn接合の空乏層内における正孔電流密度,q:素電荷,μ:正孔移動度, D;正孔の拡散係数,F:電場,p:正孔密度) (http://www.ee.es.osaka-u.ac.jp/examination/master/H21-II.pdf の最後のページII-4の最初。) という問題があったのですが、 私は、p=niexp[(Ei-Ef)/kT]を用いてdp/dtを求め、添付した図のように式変形しました。 最終的には Jp=pμdEf/dx となって、dEf/dx=0だからJp=0としようと思ったわけです。 ところが、ふと立ち止まって考えてみたら、以前、授業で、フェルミ順位がp型とn型で一致することの証明をする際、 平衡状態では、Jp=0なのでdEf/dx=0としたことを思い出したのです。 すると、先ほどの説明で良いとすると、 Jp=0→フェルミ順位が一致→Jp=0 と循環論法になってしまいおかしいなと思ったわけです。 流れとしては、フェルミ順位が一致することを使わずにJp=0を示して、そこからフェルミ順位が一致することを言えばいいと思うのですが、 Jp=0を言うことはできますでしょうか。個人的には、平衡状態で0になるのは当たり前なので、前提条件として取り扱っていいと思うのですが。。 みなさんの見解を教えてください。

  • フェルミ面

    量子力学と統計物理を勉強するようになってフェルミ面という言葉をよく聞くようになりましたが、フェルミ面がどんなものなのかいまいちイメージできません。 わかりやすい考え方はないのでしょうか?

  • フェルミエネルギーとは?

    理工学基礎 物性科学 坂田亮著 培風館 ↑ この本を勉強しているのですが、フェルミエネルギーというものはいったいなんなのかいまいちわかりません。 フェルミディラック分布関数によればフェルミエネルギーを取る電子が存在する確率が1/2になるようです。ところが、たとえば真性半導体であればフェルミエネルギーはちょうど禁制帯の真ん中に来ていますがそもそも禁制帯のエネルギーは電子は取りえないのだから存在確率は0なのではないでしょうか? また検索でフェルミエネルギーを調べると、電子の取りうる最大のエネルギーという記述がありましたが、これはつまり固体の中に存在する電子の最大のエネルギーを持っているものが半分であるということですか? 日本語がかなりまずいところもあるかと思われますが、ぜひとも教えていただきたいです。お願いします

  • フェルミディラック分布関数の見方を教えて欲しいです

    フェルミ・ディラック分布関数f(E)=1の時、粒子がある状態になる確率が100%で、f(E)=0の時はその状態になる確率は0%というような意味だと思うのですが、まだ曖昧ではっきり理解できていません。 下の図はキッテル固体物理の本の図です。例えばこのグラフから何を読み取る事が出来るのですか?温度が上がるとエネルギーEが低い状態でもf(E)が下がっていくので、ある状態になる確率が低くなるという事だと思いますが、具体的に何の粒子が何の状態になる確率の事を示しているのでしょうか。本文を読んでもそれらしい説明が書いてないような気もしますし、全体的に何の事を言ってるのかよく分かりませんでした。まずこれはある1種類の1つの粒子の状態に対してなのか、ある1種類の粒子の集団の統計的な物のどちらでしょうか。 フェルミ・ディラック分布関数の縦軸の確率は何の粒子の何になる確率ですか?どなたか教えて欲しいです。

  • 粒子のエネルギーの取り方について

    電子などの粒子は低いエネルギー準位から埋まっていき、その最大をフェルミ準位(面)と言うと思うのですが、この「電子は低いエネルギー準位から埋まっていく」とは低いエネルギー準位では電子の占有確率が高くてほぼ1であるというフェルミ・ディラック統計による考えから来たものですか?またフェルミ・ディラック統計はパウリの排他原理から考え出されたものですか? こういった理論体系が作られた背景を教えて欲しいです。