• ベストアンサー

流体力学でわからないことが

KENZOUの回答

  • ベストアンサー
  • KENZOU
  • ベストアンサー率54% (241/444)
回答No.3

>日野幹雄著 流体力学 この本は持っていないので記号の意味がどのように書かれているのか分かりませんが、 >dX/dt=u(x, y, z, t)    (1) >dY/dt=v(x, y, z, t)      >dZ/dt=w(x, y, z, t) の右辺は単にx,y,z,などの位置関数という意味だけでなく、固定座標(x,y,z)から見た場合の点(x,y,z)、時刻tに於ける流体の速度のx,y,z成分を意味しているのではないでしょうか。 Lagrageの流体を扱う方法は粒子的な立場をとります。つまり、ある時刻tに点Aにあった流体の小部分(流体粒子)に注目し、その流体粒子の動きを追いかけていく立場をとります。点Aにあった物質の座標をξとするとこれは時間の関数ですから  ξ(t)=ξ(X(t),Y(t),Z(t))とかけます(ξはベクトル量)。 時刻dt後に流体粒子が点Bに移動したとし、その位置をξ(t+dt)=ξ(X(t+dt),Y(t+dt),Z(t+dt))とするとξ(t+dt)とξ(t)の差はdtに比例すると考えられます。したがってLagrangeの立場での流体の速度は   (ξ(t+dt)-ξ(t))/dt (2) となります。 一方、座標系を固定しておいて、いつ、どこの点を、流体がどのような速さで走っているかを記述巣する立場がEulerの方法と言われます。この立場からすると流速をζとすれば  ζ=ζ(u,v,w) (3) 流速はどちらの立場で見ても当然一致しますから(2)の各成分は(3)の各成分と等しい。これがElectricGamoさんの言われている >「流体粒子に乗っている立場から見た速度」と「ある固定座標から見た際の流体粒子の位置における流れの速度」が等しいことを示しています。 ということと思います。尚、この辺りの議論は今井功著「流体力学(前編)」物理学選書14(裳華房)に詳しく書かれていますので一度図書館でご覧になられてはいかがでしょうか。

関連するQ&A

  • ラグランジュの方法での位置を微分

    x,y,zがtの関数である位置ベクトル↑rは r↑(x(t),y(t),z(t)), r↑(x,y,z)と書くことができるので 時刻tで微分すると lim(dt→0){r↑(x+dx,y+dy,z+dz)-r↑(x,y,z)}/dt =dr↑/dt=v↑ =(dx/dt,dy/dt,dz/dt) となり速度が導かれますが、 ある流体粒子の位置r↑が ある位置(a,d,c)と任意の時刻tで決まるような関数つまりr↑(a,b,c,t)となる場合 速度は(a,b,c)を固定して偏微分で ∂r↑/dt =lim(dt→0) {r↑(a,b,c,t+dt)-r↑(a,b,c,t)}/dt =∂r↑/dt=v↑ (∂x/dt,∂y/dt,∂z/dt) となるのですか? ラグランジュの方法 https://hitopedia.net/%E3%83%A9%E3%82%B0%E3%83%A9%E3%83%B3%E3%82%B8%E3%83%A5%E3%81%AE%E6%9

  • 2変数関数の2次導関数のことです。

    2回連続微分可能で、z=f(x,y),x=x(t),y=y(t)の関係があって、このときのzのtに関する2次導関数を求めるという問題なんですが、1次の導関数は dz/dt=(∂z/∂x)(dx/dt)+(∂z/∂y)(dy/dt) だと思うんですが、2次の場合は d^2z/dt^2=(d/dt)((∂z/∂x)(dx/dt)+(∂z/∂y)(dy/dt)) となって、それぞれの項を積の微分法で解けばいいのでしょうか?できたらその形も教えて下さい。お願いします。

  • 二階の全微分について

    物理でxyの座標を極座標に変換し加速度を計算するなかで、2階の全微分に困っています。あまり、微分積分は慣れていないので、丁寧に教えていただけると助かります。 http://okwave.jp/qa/q2707943.html でも、同じような質問があります。 一階の全微分はわかりますが、2階の全微分で項が増えるのがわかりません。 具体的には、 Z=f(X,Y), X=g(t) Y=h(t)で、 dZ/dt=(∂Z/∂x)dx/dt+(∂Z/∂y)dy/dt まではよくわかり、これを二階にするときはまず、第1項目(∂Z/∂x)dx/dtが {∂/∂x(∂Z/∂x)dx/dt}dx/dt+{∂/∂y(∂Z/∂x)dx/dt}dy/dt となるだと思うのですが、(∂Z/∂x)d/dt(dx/dt)という項も加わるようです。詳しくその考え方を教えていただけますでしょうか?

  • 偏微分

    偏微分を用いて、全微分をするとき 例えばx,y,zの時間に依存する変数からなる関数f(x,y,z)を時間で全微分する時、 df/dt=(df/dx)(dx/dt)+(df/dy)(dy/dt)+(df/dz)(dz/dt) となると思うのですが、 仮に、x,を時間だけでなく、もう一つ時間に依存する関数n(t)を与えるとします、 つまり X=x+n(t) f(x) => f(X)=f(x+n(t)) になるとします。 その時、時間の全微分はどうなるのでしょうか? f(x+n(t))はxとn(t)に依存しているので、f(x,n(t))と書いて f(x+n(t))=f(x,n(t)) df(x+n(t))/dt=(df(x,nt)/dt)=(df/dx)(dx/dt)+(df/dn)(dn/dt) としてもいいんでしょうか? 後どのような時、偏微分しても可能なのか教えて頂ければ幸いです。 どなたか分かる方よろしくお願いします。

  • 偏微分の問題?

    x, y, z の時間微分を: dx/dt = f(x,y,z) dy/dt = g(x,y,z) dz/dt = h(x,y,z) とします。この時、 x = f(xx, y, z) ...(1a) yy = f(xx, y, z) ...(1b) zz = f(xx, yy, z) ...(1c) ∂x /∂xx = (∂yy/∂y)(∂zz/∂z) ...(2) (1)かつ(2)を仮定すると  df/dx + dg/dy + dh/dz = 0 を簡単に示すことができるのだそうです。 ・・・なぜでしょうか?

  • 偏微分

    「z=f(x,y),x=x(t),y=y(t)のときd^2z/dt^2を求めよ」という問題なのですが、 dz/dt=(∂z/∂x)(dx/dt)+(∂z/∂y)(dy/dt) まではわかったのですが、最終的な答えが導けません。どなたかご教授願います。

  • 微分方程式

    dx/dt=3y dy/dt=x-z dz/dt=-y この微分方程式の解法をお願いします。

  • z=(-x/y)*(dy/dx) を dz/dxで微分すると?

    z=(-x/y)*(dy/dx) を dz/dxで微分すると? 微分に関して分らない問題があります。 あるテキストの解法の途中で、 「z=(-x/y)*(dy/dx) ⇒ dz/dxで微分 ⇒ dz/dx=(2/y)-(2x/y^2)*(dy/dx)」 となっているのですが、この原理について、調べてみてもなかなか見つかりません。 どなたか原理の分かる方おられませんでしょうか。

  • 次の連立微分方程式の一般解がわかりません。

    次の連立微分方程式の一般解がわかりません。 dx/dt=x-2z dy/dt=2x-y-2z dz/dt=-2x+2y よろしくお願いします。

  • ナビエストークスについてです。

    ナビエストークについてですが, P(x,y,z:t) q(x+dx,y+dy,z+dz:t+dt) のp-q間のX座標のみの速度変化を求めると (X,Y,Z):(u,v,w)より du=(du/dt)dt+(du/dx)dx+(du/dy)dy+(du/dz)dz となりますよね そこで(du/dt)を求めて, (dx/dt)=u, (dy/dt)=v, (dz/dt)=w になりますよね (du/dt)=(du/dt)+u(du/dx)+v(du/dy)+w(du/dz) となりますよね, 同様にしてy,z成分を求めると X: (du/dt)=(du/dt)+u(du/dx)+v(du/dy)+w(du/dz) Y: (dv/dt)=(dv/dt)+u(dv/dx)+v(dv/dy)+w(dv/dz) Z: (dw/dt)=(dw/dt)+u(dw/dx)+v(dw/dy)+w(dw/dz) ですよね これらをベクトル演算子を用いると対流項は なんで(Vgard)Vになるのですか? V(gradV)ならわからなくもないんですが.