• 締切済み
  • 困ってます

高校1年 数学Iの問題についてです。

高校1年 数学Iの問題についてです。 次のような△ABCにおいて、指定されたものを求めよ。 a=5√3、外接円の半径R=5の時のA 正弦定理より、 a/SinA=2R 5√3/SinA=2×5 SinA=5√3/2×5 =√3/2 5√3を右辺に持って来たら、分母に5√3が来るん じゃないんですか?? なぜ、分子に来るのかがわかりません…

共感・応援の気持ちを伝えよう!

  • 回答数3
  • 閲覧数225
  • ありがとう数0

みんなの回答

  • 回答No.3

5√3/sinA=2×5 ↓左辺と右辺を入れ替えると 2×5=5√3/sinA ↓両辺にsinA/(2×5)をかけると sinA=5√3/(2×5) =(√3)/2 5√3で割ったのではなく 単に左辺と右辺を入れ替えただけなので 左辺の分子にある5√3は右辺の分子に来るのです

共感・感謝の気持ちを伝えよう!

  • 回答No.2
  • Nouble
  • ベストアンサー率18% (330/1782)

展開間違えてません? 5√3/SinA=2×5 両辺にSinAを、かける 5√3=SinA×2×5 両辺を(2×5)で、割る 5√3/(2×5)=SinA 5√3/2/5=SinA (√3)/2=SinA 右左辺を、入れ換える SinA=(√3)/2 此で、よろしいかな? ケアレスミスですよね? √3/2 此は、 ルートが、どの範囲か 読み憎い かっこを、使って 意思を、明示的に 示した、方が いいよ

共感・感謝の気持ちを伝えよう!

  • 回答No.1
noname#231363
noname#231363

正弦定理より、 a/SinA=2R 5√3/SinA=2×5 5√3を右辺に持って来たら(両辺を5√3で割ると)、 1/SinA=2×5/5√3 両辺の逆数を取ると(両辺の分母と分子を逆にすると)、 SinA=5√3/(2×5)=√3/2

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 数学I正弦定理

    三角形ABCにおいて、b=3√2, A=45°のとき、外接円の半径Rを求めよ。 (ヒント)正弦定理 a/sinA = b/sinB = c/sinC = 2R の中からa/sinA = 2Rの      部分を取り出して利用する。Rは外接円の半径である。 どなたかこの問題の解答お願い致します。

  • 高校数学を教えてください!

    いつもお世話になっております。 解答がついていないので、間違っていた問題があったら教えてください 特に(4)が途中でよく分からなくなってしまったので、教えてください。ヒントでも良いので a=7, b=8, C=120°である三角形ABCについて (1)三角形ABCの面積Sを求めよ    S=1/2×7×8sin120     =14√3 (答) (2)cの長さを求めよ    c^2=a^2+b^2-2ab cosC       =13 (答) (3) 外接円の半径Rを求めよ    正弦定理から    13/sin120 =2R        R = 13√3/3 (答) (4) sinAの値を求めよ    a=7,外接円の半径Rが13√3/3であるから    正弦定理にそれを代入すると    a/sinA =2×13√3/3     sinA =26√3 /21  ?? (5) 内接円の半径rを求めよ    r=2s/a+b+c =3 (答) よろしくお願いします。    

  • 数学Iの問題

    難しくて分からなかったので質問させて下さい(>人<;) 正弦定理 (1)△ABCにおいて、a=6√2、A=45°、B=60°のとき、辺ACの長さbを求めなさい。 (2)△ABCにおいて、a=8、A=45°、C=30°のとき、辺ABの長さcを求めなさい。 (3)△ABCにおいて、a=12、A=60°のとき、外接円の半径Rを求めなさい。 分かる方は教えて下さると助かります。お願いします!

  • 数学(正弦定理・余弦定理)の問題です。

    数学(正弦定理・余弦定理)の問題です。 自分で解いてみた問題なのですが、 間違っていたら教えていただきたいです。 1、b=4√3、B=60°のとき、外接円の半径Rを求めよ。  正弦定理・半径R=4 2、A=135°、外接円の半径R=6のとき、長さaを求めよ。  正弦定理・a=6 3、a=2√2、A=45°、C=120°のとき長さcを求めよ。  正弦定理・c=2√3 4、a=3、b=3√2、B=45°のとき、角Aを求めよ。  正弦定理・A=30° 5、a=2、c=3、B=60°のとき、長さbを求めよ。  余弦定理・b=√7 6、b=2、c=3√3、A=150°のとき、長さaを求めよ。  余弦定理・a=7 7、a=8、 b=5、c=7のとき角Cを求めよ。  余弦定理・C=60° 8、a=8、b=13、c=7のとき、角Bを求めよ。  余弦定理・B=120° ここからが分からない問題です。 解き方など教えて下さると嬉しいです。 9、△ABCにおいて、次のものを求めよ。 (1)b=6、A=70°、C=80°のとき外接円の半径Rを求めよ。 (2)b=Rのとき、角Bを求めよ。 (3)a=10、B=60°、C=75°のとき、bを求めよ。 10、△ABCにおいて、a=10、B=60°、C=75°のとき、cを求めよ。 ただし、sin75°=√6+√2/4とする。 11、△ABCにおいて、a=7、b=5、A=120°のとき、長さcを求めよ。 12、△ABCにおいて、b=√2、c=√3-1、A=135°のとき、次の問に答えよ。 (1)長さaを求めよ。 (2)角Bを求めよ。 (3)角Cを求めよ。 部分的でもいいので、回答おねがいします。

  • 数学Iの問題です^^;

    【問題】 ΔABCにおいて,外接円の半径をR,内接円の半径をrとおく。また,∠ABC=θとおく。 (1)rをa,b,c,θを用いた式で表せ。 (2)a=1,b=cのとき,r/Rの最大値を求めよ。 【自分なりの解答】 (1) 1/2*b*c*sinθ=r/2*(a+b+c)だから r=b*c*sinθ/(a+b+c) (2)(1)よりr=b^2*sinθ/(2b+1)と表せる。 また正弦定理より,R=1/(2sinθ)と表せる。 これよりr/R=2*b^2*(sinθ)^2/(2b+1)と表せる。 これからわかりません^^; まず、こういうやり方で合っているのかもわかりません^^; どなたかよろしくお願いします。

  • 正弦定理の証明

    正弦定理の証明 図;http://www.uploda.org/uporg521821.jpg △ABCの外接円の中心をO、外接円の半径をRとする。 BOの円の交点をDとすると ∠DCB=90°、BD=2R、∠D=∠Aより sinD=sinA=a/2R とって a/sinA=2R までわかりました。 この後にsinBとsinCを導きたいんですが、よくわかりません。 詳しく教えてほしいです。

  • 三角関数で分からない問題があります。お願いします。

    三角形ABCにおいてsinA/6=sinB/5=sinC/4が成り立つことから以下の問題に答えなさい。 (1)cosA、sinAをの値を求めなさい。 (2)三角形ABCに内接する円の半径が1のとき、ABの長さ、三角形ABCの面積、三角形ABCの外接円の半径を求めなさい。 正弦定理を使うことはわかりますが、どう使えばよいのか分かりません。お願いします。

  • 正弦定理のやり方がわかりません

    正弦定理の解き方を教えて下さい。 (1)A=120°、外接円の半径=10のときa (2)a=12、b=60°、c=75°のときb (3)a=1、c=√3、c=120°のときA (4)b=5、外接円の半径R=のときB (5)A=50°、B=100°、c=5、外接円の半径R の問題が全然わかりません。 誰か教えて下さい!!!

  • 数学II

    正弦定理の問題です。 △ABCにおいて、BC=5√3.∠A=60゜のとき、外接円の半径Rを求めよ。 説明付きで解答して下さると大変助かります。 宜しくお願い致します。

  • ご指導お願いします

    △ABCにおいて、a:b=(1+√3):2、外接円の半径 R=1、C=60°のとき、a、b、c、A、Bを求めよ。 この問題の答えが知りたいのですが、解き方の見当がつきません。 正弦定理か余弦定理を使うのだと思うのですが、どのように使えばいいのか分かりません。 どなたかご指導お願いします。