• ベストアンサー
  • 困ってます

正弦定理、余弦定理の問題

正弦、余弦定理の問題でよく分からないものがあり質問しました。 問題なのですが、 △ABCにおいて、a:b=1:2、B=45°である時、次のものを求めよ。 (1)sinAの値 (2)c=ルート2 です。 (1)は計算してsinA=ルート2/4となりました。 (分母が4 分子がルート2) (2)番なのですが、余弦定理を使いaの2次方程式が出来ました。 たすきがけが出来ないのでx=マイナスb±ルートb二乗マイナス4ac/2aを使い答えを出しました。 その答えがa=ルート7±1/3なのですが (分母が3 分子がルート7±1) 答えにはa=ルート7-1/3と書いてありました。 (分母が3 分子がルート7-1) そこで、なぜ±と答えが2つになるのに解答は-しかないのでしょうか? ルート7に1を足してもひいても負の数にはならないと思うので、長さとしては問題ないように思えるのですが。 もし分かる方がいましたら教えていただけるとうれしいです。 よろしくお願いします。

共感・応援の気持ちを伝えよう!

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.3
  • ht1914
  • ベストアンサー率44% (290/658)

よけいなことかもしれませんが。 角B=45°の時 aの方程式は3a^2+2aー2=0になります。解は(-1±√7)/3です。 正の方を取ると(-1+√7)/3です。 (-1-√7)/3にはどんな意味があるのでしょう。これは-(1+√7)/3です。 角B=135°の時、方程式は3a^2-2a-2=0です。 解は(1±√7)/3です。正の方を取ると(1+√7)/3です。これは45°の時に不適となった解の符号を反対にしたものです。 △ABCでCを45°の時の反対側に取ると135°の場合になります。反対側に取ったということで-が付いたとするとうまく対応しますね。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

計算を間違っていたみたいです。 どうもありがとうございました。

その他の回答 (2)

  • 回答No.2

どういう計算をしたのか実際に書いてみてもらえないでしょうか? (-1±√7)/3で、正なのは(-1+√7)/3なのでは? c=√2のときのaの値を求めるんですよね?

共感・感謝の気持ちを伝えよう!

質問者からのお礼

そうでした。計算が間違っていたみたいです。 どうもおさわがせしました。

  • 回答No.1
  • mgsinx
  • ベストアンサー率36% (83/228)

(2)ですが、まず >x=マイナスb±ルートb二乗マイナス4ac/2aを使い答えを出しました。 「解の公式」と言います。 それから、解の公式を使って出る答えはa=(-1±√7)/3ではないでしょうか? ±のうちの-の場合はaの値が負になってしまうので、解から除外します。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

そうでした。自分の計算違いでした。 どうもおさわがせしました。

関連するQ&A

  • 正弦定理と余弦定理について

    正弦定理から余弦定理は導けるのですが、余弦定理から直接に正弦定理を出す導き方を教えてください。(参考書など調べてみましたが出ていませんでした)

  • 数学(正弦定理・余弦定理)の問題です。

    数学(正弦定理・余弦定理)の問題です。 自分で解いてみた問題なのですが、 間違っていたら教えていただきたいです。 1、b=4√3、B=60°のとき、外接円の半径Rを求めよ。  正弦定理・半径R=4 2、A=135°、外接円の半径R=6のとき、長さaを求めよ。  正弦定理・a=6 3、a=2√2、A=45°、C=120°のとき長さcを求めよ。  正弦定理・c=2√3 4、a=3、b=3√2、B=45°のとき、角Aを求めよ。  正弦定理・A=30° 5、a=2、c=3、B=60°のとき、長さbを求めよ。  余弦定理・b=√7 6、b=2、c=3√3、A=150°のとき、長さaを求めよ。  余弦定理・a=7 7、a=8、 b=5、c=7のとき角Cを求めよ。  余弦定理・C=60° 8、a=8、b=13、c=7のとき、角Bを求めよ。  余弦定理・B=120° ここからが分からない問題です。 解き方など教えて下さると嬉しいです。 9、△ABCにおいて、次のものを求めよ。 (1)b=6、A=70°、C=80°のとき外接円の半径Rを求めよ。 (2)b=Rのとき、角Bを求めよ。 (3)a=10、B=60°、C=75°のとき、bを求めよ。 10、△ABCにおいて、a=10、B=60°、C=75°のとき、cを求めよ。 ただし、sin75°=√6+√2/4とする。 11、△ABCにおいて、a=7、b=5、A=120°のとき、長さcを求めよ。 12、△ABCにおいて、b=√2、c=√3-1、A=135°のとき、次の問に答えよ。 (1)長さaを求めよ。 (2)角Bを求めよ。 (3)角Cを求めよ。 部分的でもいいので、回答おねがいします。

  • 正弦定理・余弦定理が分からなくて、困っています

    正弦定理・余弦定理の応用の問題で △ABCにおいて、A=135度,b=√3-1,c=√2のとき、 残りの辺と角の大きさを求める問題が、 a=2までは分かったんですが、sinCを求めようと 2/sin135=√2/sinC としたのですが、角度が出せない答えにしかなりません。 何が間違っているのでしょうか??教えてほしいです…

  • 正弦定理か余弦定理

    正弦定理か余弦定理を使う問題だと思っているのですが、どうしても解き方がわかりません。 お願いします。 (問) 三角形ABCにおいて、b=4、∠A=60°、∠C=45°のとき、cを求めなさい。 (回答) 4√3-4または4(√3-1)

  • 正弦定理・余弦定理

    三角形の頂点A,B,Cについて 2sinA=cosB・sinCが成立するとき、三角形ABCが二等辺三角形となることがあるか。という問題なんですけど、辺BC,CA,ABの長さをa,b,cとすると、正弦定理で左辺=a/R,正弦定理と余弦定理で右辺=(c^2+a^2-b^2)/2ca・c/2R=(c^2+a^2-b^2)/4aR よって、a/R=(c^2+a^2-b^2)/4aR よって、c^2=3a^2+b^2となるところまではわかるんですけど、この後どうすれば良いのかわかりません。

  • 余弦定理・正弦定理で・・・

    余弦定理と正弦定理の両方を使う問題を解いているのですが…何度やってもsinCの値がおかしくなり具体的な角度を出すことが出来ません。回答お願いします。 三角形ABCにおいてa=2,b=√6,B=60°のときCを求めよ。

  • 正弦定理と余弦定理

    正弦定理か余弦定理を使う解き方を教えてください a=2 b=2√2 A=30°のときのB よろしくお願いします

  • 正弦定理と余弦定理で答が違う?

    三角形の残りの角と辺の長さを求めよという問題で、余弦定理を用いると答が一つなのに、正弦定理も用いて解くと答が二つになってしまうことがあります。 例えば、 a=2,b=√6,c=-1+√3 で、最初に余弦定理からA=45°と出し、その後、正弦定理からB=60°、120°となるのですが、余弦定理だとB=120°となります。だけれど、問題の答はA=45°,B=120°,C=15°です。 どうすれば良いんでしょう? テスト近いので少し焦ってます。よろしくお願いします。

  • 数IAの問題 正弦定理 余弦定理

    下記の問題ですが、正弦定理、余弦定理をつかえば解けると思うのですが、 正しい回答が自分では導きだせません。。。 解答方法をどなたか教えてください。 問題: △ABCにおいて、b=12、c=4√2、B=60°、C=45°のとき、 aの値を求めなさい。 なお、回答は8√2になるそうです。

  • 数1 正弦定理、余弦定理について

    a=√6、b=2√3、c=3+√3のとき、A、B、Cを求めよ。 この問題で余弦定理を使う事は分かりました。分母に3+√3がくるのが厄介なので(後で約分できること知らなかった)Cから求めたらcosC=√2+√6/4となり、Cが求められませんでした。 素直にAを求めていたらcosA=√3/2で求められました。 これは見たら、これは求められないな。とか、分かるものなのでしょうか? 普通、Aから求めれば解けるようになっているのでしょうか。