• 締切済み
  • 困ってます

正弦定理・余弦定理

三角形の頂点A,B,Cについて 2sinA=cosB・sinCが成立するとき、三角形ABCが二等辺三角形となることがあるか。という問題なんですけど、辺BC,CA,ABの長さをa,b,cとすると、正弦定理で左辺=a/R,正弦定理と余弦定理で右辺=(c^2+a^2-b^2)/2ca・c/2R=(c^2+a^2-b^2)/4aR よって、a/R=(c^2+a^2-b^2)/4aR よって、c^2=3a^2+b^2となるところまではわかるんですけど、この後どうすれば良いのかわかりません。

共感・応援の気持ちを伝えよう!

  • 回答数3
  • 閲覧数341
  • ありがとう数1

みんなの回答

  • 回答No.3

#2です。計算間違えをしていました(^^;; 得られる式はc^2=3a^2+b^2でOKですね。 a=bのときc=2a、これよりc=2a+2b よってこのとき二等辺三角形は存在する。 b=cのときa=0よって存在しない。 c=aのときaは実数解をもたいないので存在しない。

共感・感謝の気持ちを伝えよう!

  • 回答No.2

おそらく最後の変形は 4+b^2=c^2+a^2となるでしょうか。 #1さんも指摘されているように、 a=bという仮定をすると、 4=c^2よりcが得られ、これは条件を満たすので a=bの二等辺三角形は存在し、斜辺の長さは2である ということができると思います。 b=cのときも同様ですが、 c=aのとき、bは実数解をもたないので c=aの二等辺三角形は存在しません。

共感・感謝の気持ちを伝えよう!

  • 回答No.1
  • alphion
  • ベストアンサー率19% (27/136)

2等辺三角形なので、 a=b,a=c,b=cのそれぞれで、あなたが求めた式が成り立つ解があるかを調べればよいのでは?

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 正弦定理と余弦定理で答が違う?

    三角形の残りの角と辺の長さを求めよという問題で、余弦定理を用いると答が一つなのに、正弦定理も用いて解くと答が二つになってしまうことがあります。 例えば、 a=2,b=√6,c=-1+√3 で、最初に余弦定理からA=45°と出し、その後、正弦定理からB=60°、120°となるのですが、余弦定理だとB=120°となります。だけれど、問題の答はA=45°,B=120°,C=15°です。 どうすれば良いんでしょう? テスト近いので少し焦ってます。よろしくお願いします。

  • 余弦定理・正弦定理で・・・

    余弦定理と正弦定理の両方を使う問題を解いているのですが…何度やってもsinCの値がおかしくなり具体的な角度を出すことが出来ません。回答お願いします。 三角形ABCにおいてa=2,b=√6,B=60°のときCを求めよ。

  • 正弦定理と余弦定理について

    正弦定理から余弦定理は導けるのですが、余弦定理から直接に正弦定理を出す導き方を教えてください。(参考書など調べてみましたが出ていませんでした)

  • 正弦定理・余弦定理が分からなくて、困っています

    正弦定理・余弦定理の応用の問題で △ABCにおいて、A=135度,b=√3-1,c=√2のとき、 残りの辺と角の大きさを求める問題が、 a=2までは分かったんですが、sinCを求めようと 2/sin135=√2/sinC としたのですが、角度が出せない答えにしかなりません。 何が間違っているのでしょうか??教えてほしいです…

  • 正弦定理か余弦定理

    正弦定理か余弦定理を使う問題だと思っているのですが、どうしても解き方がわかりません。 お願いします。 (問) 三角形ABCにおいて、b=4、∠A=60°、∠C=45°のとき、cを求めなさい。 (回答) 4√3-4または4(√3-1)

  • 正弦定理と余弦定理

    正弦定理か余弦定理を使う解き方を教えてください a=2 b=2√2 A=30°のときのB よろしくお願いします

  • 数学(正弦定理・余弦定理)の問題です。

    数学(正弦定理・余弦定理)の問題です。 自分で解いてみた問題なのですが、 間違っていたら教えていただきたいです。 1、b=4√3、B=60°のとき、外接円の半径Rを求めよ。  正弦定理・半径R=4 2、A=135°、外接円の半径R=6のとき、長さaを求めよ。  正弦定理・a=6 3、a=2√2、A=45°、C=120°のとき長さcを求めよ。  正弦定理・c=2√3 4、a=3、b=3√2、B=45°のとき、角Aを求めよ。  正弦定理・A=30° 5、a=2、c=3、B=60°のとき、長さbを求めよ。  余弦定理・b=√7 6、b=2、c=3√3、A=150°のとき、長さaを求めよ。  余弦定理・a=7 7、a=8、 b=5、c=7のとき角Cを求めよ。  余弦定理・C=60° 8、a=8、b=13、c=7のとき、角Bを求めよ。  余弦定理・B=120° ここからが分からない問題です。 解き方など教えて下さると嬉しいです。 9、△ABCにおいて、次のものを求めよ。 (1)b=6、A=70°、C=80°のとき外接円の半径Rを求めよ。 (2)b=Rのとき、角Bを求めよ。 (3)a=10、B=60°、C=75°のとき、bを求めよ。 10、△ABCにおいて、a=10、B=60°、C=75°のとき、cを求めよ。 ただし、sin75°=√6+√2/4とする。 11、△ABCにおいて、a=7、b=5、A=120°のとき、長さcを求めよ。 12、△ABCにおいて、b=√2、c=√3-1、A=135°のとき、次の問に答えよ。 (1)長さaを求めよ。 (2)角Bを求めよ。 (3)角Cを求めよ。 部分的でもいいので、回答おねがいします。

  • 高1数学 正弦定理と余弦定理

    正弦定理と余弦定理の問題の見分けがつきません!! 私には、どの問題でも正弦定理の問題に見えてしまいます・・・。 よろしければ、見分け方を教えてくれませんか?

  • 正弦定理と余弦定理の判断

    正弦定理と余弦定理を問題文で見分ける方法ってなんですか? どこで判断したらいいとかありますか?

  • 数I  正弦定理

    三角形の辺の長さや内角を求める問題で、はじめに二辺一対角が与えられた場合、 余弦定理を用いて残りの辺の長さを求めて、 その後に正弦定理で残りの二角を求めるやり方で計算したんですが、 答えの数値が3つ出て、1つだけ間違いでした。 たぶん二角を求めるときに正弦定理を用いたのが原因のような気がするんですが、 この場合正弦定理を使うとだめなんでしょうか。(答えでは余弦定理を用いていました) また、こんなふうに正解も含むいくつかの数値が計算で出た場合、どれが正解でどれが間違いかというのを見分ける方法というのはありますか。 どなたか教えていただけたら嬉しいです。