- ベストアンサー
- 困ってます
高1数学 正弦定理と余弦定理
- みんなの回答 (3)
- 専門家の回答
質問者が選んだベストアンサー
- ベストアンサー
- 回答No.2
- ayaka4869
- ベストアンサー率33% (2/6)
問題にもよると思いますが… 余弦定理は少なくとも辺の長さが2つは分かっていないと使えません。問題文中にcosの値などが明記されているようでしたら、余弦定理を使った方がいいと思います。 正弦定理は辺の長さが1つしかわかっていなくても、角の大きさが2つ以上わかっていれば使えます。問題文中にsinの値が明記されているようでしたら正弦定理です。 辺がよくわかっている時は余弦定理、角がよくわかっている時は正弦定理と考えればいいと思います。 どっちも使える時は、好きな方を使えばいいと思います。 問題をたくさんやればきっとわかってくると思います(*^_^*) 数学は練習量が命です!がんばって下さいね♪ という私が受験生…笑 おまけ 入試などでは3辺の長さと1角の大きさがわかっていて、外接円の半径を問う問題などが出てきます。これは、まず余弦定理でcosθを求めて、cos2θ+sin2θ=1(2は二乗の2です)を使ってsinθの値を求めます。そして正弦定理を使って外接円の半径を求めるという手順で解いていきます。
関連するQ&A
- 正弦定理と余弦定理で答が違う?
三角形の残りの角と辺の長さを求めよという問題で、余弦定理を用いると答が一つなのに、正弦定理も用いて解くと答が二つになってしまうことがあります。 例えば、 a=2,b=√6,c=-1+√3 で、最初に余弦定理からA=45°と出し、その後、正弦定理からB=60°、120°となるのですが、余弦定理だとB=120°となります。だけれど、問題の答はA=45°,B=120°,C=15°です。 どうすれば良いんでしょう? テスト近いので少し焦ってます。よろしくお願いします。
- ベストアンサー
- 数学・算数
- 数学(正弦定理・余弦定理)の問題です。
数学(正弦定理・余弦定理)の問題です。 自分で解いてみた問題なのですが、 間違っていたら教えていただきたいです。 1、b=4√3、B=60°のとき、外接円の半径Rを求めよ。 正弦定理・半径R=4 2、A=135°、外接円の半径R=6のとき、長さaを求めよ。 正弦定理・a=6 3、a=2√2、A=45°、C=120°のとき長さcを求めよ。 正弦定理・c=2√3 4、a=3、b=3√2、B=45°のとき、角Aを求めよ。 正弦定理・A=30° 5、a=2、c=3、B=60°のとき、長さbを求めよ。 余弦定理・b=√7 6、b=2、c=3√3、A=150°のとき、長さaを求めよ。 余弦定理・a=7 7、a=8、 b=5、c=7のとき角Cを求めよ。 余弦定理・C=60° 8、a=8、b=13、c=7のとき、角Bを求めよ。 余弦定理・B=120° ここからが分からない問題です。 解き方など教えて下さると嬉しいです。 9、△ABCにおいて、次のものを求めよ。 (1)b=6、A=70°、C=80°のとき外接円の半径Rを求めよ。 (2)b=Rのとき、角Bを求めよ。 (3)a=10、B=60°、C=75°のとき、bを求めよ。 10、△ABCにおいて、a=10、B=60°、C=75°のとき、cを求めよ。 ただし、sin75°=√6+√2/4とする。 11、△ABCにおいて、a=7、b=5、A=120°のとき、長さcを求めよ。 12、△ABCにおいて、b=√2、c=√3-1、A=135°のとき、次の問に答えよ。 (1)長さaを求めよ。 (2)角Bを求めよ。 (3)角Cを求めよ。 部分的でもいいので、回答おねがいします。
- 締切済み
- 数学・算数
- 余弦定理・正弦定理で・・・
余弦定理と正弦定理の両方を使う問題を解いているのですが…何度やってもsinCの値がおかしくなり具体的な角度を出すことが出来ません。回答お願いします。 三角形ABCにおいてa=2,b=√6,B=60°のときCを求めよ。
- ベストアンサー
- 数学・算数
- 正弦定理・余弦定理が分からなくて、困っています
正弦定理・余弦定理の応用の問題で △ABCにおいて、A=135度,b=√3-1,c=√2のとき、 残りの辺と角の大きさを求める問題が、 a=2までは分かったんですが、sinCを求めようと 2/sin135=√2/sinC としたのですが、角度が出せない答えにしかなりません。 何が間違っているのでしょうか??教えてほしいです…
- ベストアンサー
- 数学・算数
- 球面三角形の正弦定理・余弦定理
球面上の非ユークリッド幾何学に興味を持ち、正弦定理・余弦定理があることまではわかったのですが、どこにも証明が載っておらずに困っています。どのような証明で導けるのでしょうか?
- ベストアンサー
- 数学・算数
質問者からのお礼
回答ありがとうございます!! わかりやすい解説だったので、問題が解けるようになりました! 受験生なんですね!? 頑張ってください!!! 健闘を陰ながら祈っておりますっ! 本当にありがとうございました!