• ベストアンサー
  • 暇なときにでも

正弦定理の証明

正弦定理の証明 図;http://www.uploda.org/uporg521821.jpg △ABCの外接円の中心をO、外接円の半径をRとする。 BOの円の交点をDとすると ∠DCB=90°、BD=2R、∠D=∠Aより sinD=sinA=a/2R とって a/sinA=2R までわかりました。 この後にsinBとsinCを導きたいんですが、よくわかりません。 詳しく教えてほしいです。

共感・応援の気持ちを伝えよう!

  • 回答数3
  • 閲覧数320
  • ありがとう数3

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.3

ttp://up.87op.com/getfile.php おそらくこのような形で3つともいえるでしょう。 半径Rの円Oに内接するΔABC(BC=a)で、 BとOを通る直線を引き、それと円との交点をA'とする。 ∠A=∠A' BA'=2Rなので 2R*sinA=a ⇔2R=a/sinA

共感・感謝の気持ちを伝えよう!

その他の回答 (2)

  • 回答No.2
  • debut
  • ベストアンサー率56% (913/1604)

sinBなら、ACを固定してBをBCが円の中心にくるところへ移動して 同じことをすればいいのでは? sinCなら、ABを固定して・・ でも、正弦定理の証明ってそうでしたっけ? Aが90°より小さいとき・Aが90°のとき・Aが90°より大きいとき、の 3通りを証明するのではないでしょうか?どうでしょう?

共感・感謝の気持ちを伝えよう!

  • 回答No.1
  • mmk2000
  • ベストアンサー率31% (61/192)

同じことを文字を置き換えただけで繰り返すと b/sinB=2R c/sinC=2R が示せます。 すべて2Rだからすべて等しい、ということでしょう。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 数学I正弦定理

    三角形ABCにおいて、b=3√2, A=45°のとき、外接円の半径Rを求めよ。 (ヒント)正弦定理 a/sinA = b/sinB = c/sinC = 2R の中からa/sinA = 2Rの      部分を取り出して利用する。Rは外接円の半径である。 どなたかこの問題の解答お願い致します。

  • 正弦定理の証明

    正弦定理の証明について質問します。 三角形ABCの外接円の中心をO、半径をRとする 0度<A<90度の時、円周角の定理により角BCD=90度、角A=角D BD=2RであるからsinD=a/2RまたsinA=sinD(※) したがってsinA=a/2Rすなわちa/sinA=2R とあるのですが、※の部分についてsinDについては三角形BCDに直角があり sinD=a/2Rとなる事は理解出来ますが、三角形ABCは直角を持たないのに sinAが出来るのが分かりません。 なぜ三角形ABCは直角を持たないのにsinAと出来るのか教えてください。

  • 正弦定理のやり方がわかりません

    正弦定理の解き方を教えて下さい。 (1)A=120°、外接円の半径=10のときa (2)a=12、b=60°、c=75°のときb (3)a=1、c=√3、c=120°のときA (4)b=5、外接円の半径R=のときB (5)A=50°、B=100°、c=5、外接円の半径R の問題が全然わかりません。 誰か教えて下さい!!!

  • 正弦定理の外接円

    正弦定理は外接円とも関連してきます。 でも、なんでいきなり外接円!?っていうかんじでした… いきなり外接円とか…急に登場してきて意味が分からないです。 どうして外接円が出てきたのでしょうか? 問題を解くためだけに登場してきたのですか? 回答よろしくお願いいたします。

  • 数学(正弦定理・余弦定理)の問題です。

    数学(正弦定理・余弦定理)の問題です。 自分で解いてみた問題なのですが、 間違っていたら教えていただきたいです。 1、b=4√3、B=60°のとき、外接円の半径Rを求めよ。  正弦定理・半径R=4 2、A=135°、外接円の半径R=6のとき、長さaを求めよ。  正弦定理・a=6 3、a=2√2、A=45°、C=120°のとき長さcを求めよ。  正弦定理・c=2√3 4、a=3、b=3√2、B=45°のとき、角Aを求めよ。  正弦定理・A=30° 5、a=2、c=3、B=60°のとき、長さbを求めよ。  余弦定理・b=√7 6、b=2、c=3√3、A=150°のとき、長さaを求めよ。  余弦定理・a=7 7、a=8、 b=5、c=7のとき角Cを求めよ。  余弦定理・C=60° 8、a=8、b=13、c=7のとき、角Bを求めよ。  余弦定理・B=120° ここからが分からない問題です。 解き方など教えて下さると嬉しいです。 9、△ABCにおいて、次のものを求めよ。 (1)b=6、A=70°、C=80°のとき外接円の半径Rを求めよ。 (2)b=Rのとき、角Bを求めよ。 (3)a=10、B=60°、C=75°のとき、bを求めよ。 10、△ABCにおいて、a=10、B=60°、C=75°のとき、cを求めよ。 ただし、sin75°=√6+√2/4とする。 11、△ABCにおいて、a=7、b=5、A=120°のとき、長さcを求めよ。 12、△ABCにおいて、b=√2、c=√3-1、A=135°のとき、次の問に答えよ。 (1)長さaを求めよ。 (2)角Bを求めよ。 (3)角Cを求めよ。 部分的でもいいので、回答おねがいします。

  • 【数学】正弦定理におけるsinについて

    正弦定理を証明する際、三角形ABCとその外接円を使って証明しますよね? A<90°のとき、円周上に点Dをとって円周角の定理より sinA=sinD=BC/BD=a/2R となるようですが… sinというのは直角三角形における辺の比を表しているものなんですよね? でも三角形はすべて直角三角形とは限りませんし、なぜ直角三角形ではない三角形でsinAと表せるのか疑問に思いました。 sinAと表す時はその角Aを持つ三角形が直角三角形であるという前提がなければダメなんじゃないですか? どなたか答えてくださると嬉しいですm(_ _ )m

  • 正弦定理の計算

    添付画像の△ABCにおいて、 b=√3、c=√2、∠B=120°のとき、∠Cの値は、「45°」である。 という問題があるのですが、 「」内の求め方が分かりません。 正弦定理a/sinA=b/sinB=c/sinC=2Rを使って、 b=√3、c=√2、∠B=120°を代入して、 √3/sin120°=√2/sinC,sin120=√3/2より √3/(√3/2)=2=√2/sinC までは分かったのですが、 ここから先が分かりません。 ∠C=45°とするには、 sinCが1/√2にならないといけないと思うのですが、 行き詰ってしまいました。 初歩的な事かもしれないのですが、 つい最近数学の勉強を始めたもので申し訳ないです。 どなたか宜しくお願い致します。

  • 正弦定理 角度の求め方を教えて下さい

    こんばんは。 今、数学1の三角比を勉強しています。 その中の正弦定理の問題が分からないので、教えて下さい。 △ABCにおいて、b=3√6、c=6、B=120°のとき、 Cを求めなさい。 という問題で、自分なりに途中まで解いたのが、 正弦定理より、 3√6/sin120°=6/sinC 3√6sinC=6sin120° sinC=6×√3/2÷3√6 sinC=√2/2 B=120°より 0°<C<60° ここまで出来ました。 ですがここから先がどうしても分かりません。 何か公式を使うんでしょうか? どなたか解き方を教えて下さい。 今解いたのも間違っていたら教えて下さい、よろしくお願いします。

  • 正弦定理のこの問題をおしえてください

    この問題を教えてください。 問題 △ABCにおいて、a=5√2、c=10  A=30°のときCを求めよ。 ただし、0<C≦90とする。 解答(一部) a=5√2、c=10、A=30°であるから、正弦定理によって 10/sinC=5√2/sin30° よって sinC/10=sin30°/5√2 ↑ よってsinC/10=sin30°/5√2 というのがよくわかりません なぜ分子と分母をひっくり返したのでしょうか?

  • 正弦定理について

    ご質問させていただきます。 正弦定理の問題で、 半径8の円に内接する△ABCにおいて、B=45°のとき、 対辺bの長さを求めよ。 という問題がありました。 b=2R・sinBから R=8とB=45°を代入して、 b=2・8・sin45° としたとき、sin45°=√2/2とあり、 回答は、8√2となっているのですが、 sin45°=√2/2となる理由が分かりません。 どなたか教えていただけると幸いです。