• 締切済み
  • 困ってます

平面図形 証明の添削をお願いいたします。

平面図形 証明の添削をお願いいたします。 問題. 図1で、△ABCは∠A=90°の直角二等辺三角形である。 点Pは辺AB上にあり、点Qは辺AC上にあって、AP=CQとする。ただし、点Pは頂点A、Bいずれにも一致せず、点Qは頂点A、Cのいずれにも一致しない。点Pと点Qを結ぶ。 図2は、図1において、∠BACの二等分線と辺Bcとの交点をRとし、点Pと点Rをそれぞれ結んだ場合を表している。△RQPは直角二等辺三角形であることを証明しなさい。 【証明】 △ARPと△CRQにおいて、 仮定よりAP=CQ...(1) 線分ARは∠BACを2等分するから、∠RAC=45° また、∠RCQ=45° よって△ARCは∠ARC=90°の直角二等辺三角形であるから、 AR=CR...(2) ∠RAP=RCQ...(3) (1),(2),(3)より2辺と間の角が等しいので △ARP=△CRQ したがってRP=RQ...(4) PRQ=∠PRA+∠ARQ =∠QRC+∠ARQ=∠ARC=90° よって、これと(4)より、△RQPは直角二等辺三角形である。 お力添えいただけると嬉しいです。よろしくお願いいたします:)

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数131
  • ありがとう数1

みんなの回答

  • 回答No.1

流れはあっています。誤字の指摘ですが、「△ARP=△CRQ」⇒「△ARP≡△CRQ」、「PRQ=∠PRA+∠ARQ」⇒「∠PRQ=∠PRA+∠ARQ」を修正すればいいと思います。 余談ですが、∠PRQが90度であることを示すために、四角形AQRPの内角に注目するという方法もあると思います。ご参考まで。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとうございます。 参考になりました! もう一つの解法も考えてみます!

関連するQ&A

  • 証明を教えてください!

    図の△ABCは、AB=ACの直角二等辺三角形である。辺BC上に点Dをとり図のように、AD=AEとなる直角二等辺三角形ADEをつくり、DEとACとの交点をFとする。 このとき「BD=CE」であることを証明しなさい。 という問題です。教えてください!

  • 中2 図形 証明問題

    この問題おしえください。かなり困っています・・・ 三角形ABCは角A=90度の直角二等辺三角形である。また、点D、Eはそれぞれ頂点Aを通る直線L上にあり、角BAD=角AEC=90度である。三角形BADと三角形ACEが合同であることを証明しなさい。 という問題です。

  • 直角二等辺三角形を用いた平面図形の証明問題

    ⊿ABCを∠A=90°、AB=ACとなるような直角二等辺三角形とする。辺AB、AC上に点D,Eをそれぞれ AD=2BD、CE=2AEとなるようにとると、∠ADE=∠EBCとなることを示せ。 という問題がわかりません。 点EからBCに平行な直線を引いて考えればいいのかなと思ったのですが、そこで行き詰ってしまって… よろしくお願いします。

  • 数学の、図形の証明問題を教えて下さい。

    図で、三角形ABCは、AC > ABの三角形で、点Pは辺AC上に、点Qは辺BC上にある点である。 頂点Aと点Q、頂点Bと点P、点Pと点Qをそれぞれ結び、線分AQと線分BPの交点をRとする。 BP=CP、AQ=CQのとき、三角形ABC ∽ 三角形QPCであることを証明しなさい。

  • AB<AP<ACであることを証明せよ (数A・平面図形)

    クリックありがとうございます(∩´∀`)∩ ★∠B=90°の直角三角形ABCの辺AB上に頂点と異なる点Pをとるとき、  AB<AP<ACであることを証明せよ。 この問題について説明をお願いします。

  • 中学入試、図形の問題です。教えてください

    解答のみで解説がなく、理解できずに困っています。どうぞよろしくお願い致します。 ≪問題≫ 図のようにAB=AC=10cmの直角二等辺三角形があります。 点Aを中心に1回転させたとき、辺BCが通る図形の面積は何cm2になりますか? 円周率は3.14として計算しなさい。 ≪解答≫ 157cm2

  • 辺の長さを教えてください!

    図において、△ABC、△DBEはいずれも∠B=90°の直角二等辺三角形であり、点Eは辺AC上にある。2点A、Dを結んでできる四角形ADBEの面積が10平方cmであるとき、辺BCの長さを求めよ。 という問題です。どうがんばっても解けません。教えてください。お願いします。

  • どうして、解るのかわかりません。

    BC=20CM、AB=AC、∠A=90°の直角二等辺三角形ABCがある。 辺AB上に点D、辺AC上に点Eをとり、辺BC上には、二点F、Gを順に取る。 四角形DFGEが面積48CM2の長方形であるとき、辺DFの長さを求めよ。 問題の答えはどうしてそうなるかわかるのですが、解説の次の部分がわかりません。 「△ABCは直角二等辺三角形であるから∠A=90°∠B=∠C=45°である。{よって△FDB、△GCEも直角二等辺三角形である}」 {}の部分がわかりません。 どうして△ABCが直角二等辺三角形であるから、上記 つの三角形も直角二等辺三角形であると言えるのでしょうか?

  • 数A図形問題

    以下の問題の(2),(4)が解けず困っています.お時間ある方よろしくお願いします. BA=BC=1,∠ABC=90°である直角二等辺三角形ABCの内部に,3点P,Q,Rを∠BAP=∠BCQ=∠ACR=∠CAR=15°,∠ABP=∠CBQ=30°となるようにとる. このとき次の問いに答えよ.なおcos15°=(√6+√2)/4を用いよ. (1) AR=√3-1であることを示せ. (2) APの長さを求めよ. (3) ∠APR=90°であることを示せ. (4) ΔPQRの面積を求めよ.

  • 小6 図形の問題です。

    図のような台形ABCDがある。 A→D→Aの順に点Pは毎秒1cmの速さで辺AD上を動く。 同時に点Qは毎秒1cmの速さで辺BC上をCからBまで動く。 また点Rは辺CDを3等分する点のうちCに近い方の点である。 1) 点Pが点Aを出発してからの三角形PQRの面積と 時間の関係をグラフに表しなさい。 2) 三角形PQRが直角二等辺三角形になるのは何秒後ですか? この問題の解き方がわからず、1秒後とに動かした図を描いて計算してみました。 もっと簡潔に答える方法があるのでしょうか? 教えてください。