• ベストアンサー
  • すぐに回答を!

中1数学 平面図形の問題

右の図[添付データ]で.頂点が辺BC上にある二等辺三角形ADCを作図しなさい。 この問題がわかりません。教えてください。

この投稿のマルチメディアは削除されているためご覧いただけません。

共感・応援の気持ちを伝えよう!

  • 回答数3
  • 閲覧数207
  • ありがとう数3

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.3
  • shuu_01
  • ベストアンサー率55% (760/1366)

二等辺三角形って言っても、底は AC、CD、AB 3つあるので悩んじゃいますよね でも、底を CD、AB にしようとすると、D は辺 BC 上にとることができず、BC からはみ出てしまいます そこで、底は AC ということになります

共感・感謝の気持ちを伝えよう!

質問者からのお礼

回答ありがとうございます。できました。図もありわかりやすかったです。

その他の回答 (2)

  • 回答No.2

二等辺三角形の頂点は必ず垂直二等分線上にきますので、、この問題の場合、辺ACの垂直二等分線を引き、辺BCとその交点をDとすればよいです。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

回答ありがとうございます。できました。

  • 回答No.1

図参照

共感・感謝の気持ちを伝えよう!

質問者からのお礼

回答ありがとうございます。

関連するQ&A

  • 中1数学 平面図形の問題(二等辺三角形)

    中1数学 平面図形の問題 http://okwave.jp/qa/q8427000.html 右の図[添付データ]で.頂点が辺BC上にある二等辺三角形ADCを作図しなさい。 って質問に答えて、ベストアンサーを貰ってしまったのですが、間違えてました 自信なくなったので、他にも答えがないか教えてください 訂正後の僕の答え: 二等辺三角形って言っても、底は AD、CD、AC 3つあるので悩んじゃいますよね でも、底を CD にしようとすると、D は辺 BC 上にとることができず、BC からはみ出てしまいます そこで、底は AC あるいは AD ということになります

  • 平面図形

    長方形ABCDがある。この長方形の面積に等しく、2辺の長さがBCに等しい二等辺三角形PBCを作図の問題で。 図は縦ABより横BCの方が2,3倍大きいです。 この問題でBCとの距離が2ABとなる(考える)のがわかりません。 問題には2倍と書いてないのですが。

  • 数学得意な方

    底辺BCが60、辺ABが50の図のような二等辺三角形があり、Aから辺BCに下ろした垂線と辺BCとの交点をDとする。二等辺三角形の3つの頂点を通る円の中心をо、半径をχとするとき、次の問いに答えなさい。 (1)ADの長さを求めなさい (2)半径χを求めなさい です… なんだか教科書を見ても全然分かんないんです… 解き方だけでもいいので教えて下さい。 よろしくお願いします

  • 数学A図形です

    三角形ABCの角B.角Cの二等分線が 辺AC.ABと交わる点を、それぞれD.Eとする。 ED//BCならば、三角形ABCは二等辺三角形であることを証明せよ。 という問題です。 お願いします。

  • 数学の証明問題

    今年度から高校生になるもので、宿題で困ってます。数学の問題で・・・ △ABCの∠B、∠Cの二等辺三角形が、辺AC,ABと交わる点をそれぞれD.Eとする。ED平行BCならば、△ABCは二等辺三角形であることを証明せよ。 という問題と、 △ABCの各頂点を通り、それぞれの向かい合う辺に平行な直線の交点を、P,Q,Rとする。△ABCの各頂点から向かい合う辺に下ろした3本の垂線AD,BE,CFは、△PQRの外心で交わることを証明せよ。 という問題がどうしてもわかりません。 証明お願いします!!!

  • 平面図形

    三角形ABCがある。AB=6、BC=10であり、AC上に点Dをとり、DCの長さを6とし、DBの長さを6とする。 また、ADの中点をEとする。辺ABを3:1に分ける点をFとする。 辺DBの延長と辺EFの延長して、交わった点をGとする。 このときAEの長さを求めよ。またBGの長さを求めよ。 と言う問題です。 わかっていることをまとめると 長さがわかっているのは AB=DC=DB=6 BC=10 ADを1:1に分ける点をE ABを3:1に分ける点をF △DBCと△ABDは二等辺三角形である と言うことが文章からわかると思います。 まずAEの長さを考えると 点DからBCに垂線を引き、その交点をHとする。 また△ABDは二等辺三角形だから、点Eと点Bを結ぶ △CDH∽△CBEであるから CD:CB=CH:CE 6:10=5:CE 6CE=50 CE=25/3 CD=6より DE=CE-CD  =25/3-6  =7/3 となり DE=EAなので AE=7/3となりました。 次に 辺の比を使って何とかGBの長さを求めようとしたのですがさっぱりわかりません。 すいませんが、詳しい解説をお願いします。またこのような問題の考え方がありましたら教えてください。

  • 数学図形

    中3です 下の図のABCは直角二等辺三角形、 頂点Aを通り辺BCに平行な直線状に点Dを取りBC=BDです。 角ABDを求めよという問題です。 わかる角度が45度、90度しかなくわかりません。 おねがいします。

  • 図形に関する問題なんですけど…

    図形に関する問題なんですけど… 写真の図のような台形と三角形があって、台形と三角形の面積が等しくなるように 各図形の高さを求める問題なんですけど 三角形は二等辺三角形で頂点の角度は130度です またR=10です 教えてもらえないでしょうか よろしくお願いします

  • 中学 数学図形の問題です

    教えて下さい ABCDは平行四辺形で ABの長さを求める問題です。 下の図は解説です。問題で角度でわかってるのは、●だけです。 解説にある、「AE、DCを延長した交点をGとする、△DAGは二等辺三角形になる」とありますが、なぜ二等辺三角形になるのですか? よろしくお願いします。

  • 数学の図形問題(中学生レベル?)

    図形問題で分からないものがあるので、ぜひお知恵を貸してください。 AB=ACの二等辺三角形ABCがあります。頂点Bから辺ACに線を、頂点Cから辺ABに線をそれぞれ引きます。この時の辺ACとの交点を点D、辺ABとの交点を点Eとし、二点を結びます。ここで求めたいのは、∠DECの大きさです。与えられた条件は、∠A=20度、∠DBC=50度、∠ECB=60度です。 私は、点Eを通って辺BCと平行な線を補助線として引くのかなぁと考えていたのですが、行き詰まってしまいました…。図形問題ということで、上手い説明が出来ていない&解説もしにくいかと思いますが、どうかよろしくお願いしますm(_)m