• 締切済み
  • すぐに回答を!

ナッシュ均衡の問題です

数学の課題で、二問構成です。 利得表はなんとかかけそうなのですが、文系脳の自分ではどうしても正解できそうにないのでどうかよろしくお願いいたします。 〈スーパーA と消費者 B のゲームを考える。〉 スーパーは,卵 1 パックを高価格で販売する か,低価格で販売するかを考えている。 消費者 B は,近隣のスーパーの価格を比べて安いところで購入するか、調べないでこのスーパーA で購入するかを選択する。 ・消費者がチラシ比較をしない場合はこのスーパーで購入することになる。 このとき,ス ーパーが高価格つけているとすると,消費者の利得は 1 となり,低価格をつけると 4 の 利得を得るとする。一方,スーパーは高価格のときは 5、低価格のときは 2 の利得を得 る。 消費者がチラシ比較をすると,安いスーパーで購入することになる。したがって、このときスーパーが高価格をつけると,スーパーの利得は 0 となり,低価格をつけた場合は 2 の利得を得る。 消費者側は,スーパーA が高価格をつけていた場合は,チラシ比較を して得したことになるので 2 の利得を得る。 また,低価格をつけていた場合は,チラシ 比較しなくてもよかったので時間を浪費した分,チラシ比較をしたときよりも利得は低くなり 3 となる。 ・消費者がチラシ比較をすると,安いスーパーで購入することになる。 したがって,この ときスーパーが高価格をつけると,スーパーの利得は 0 となり,低価格をつけた場合は 2 の利得を得る。 消費者側は,スーパーA が高価格をつけていた場合は,チラシ比較を して得したことになるので 2 の利得を得る。 また,低価格をつけていた場合は,チラシ 比較しなくてもよかったので時間を浪費した分,チラシ比較をしたときよりも利得は低くなり3となる。 (第一問にスーパーが低下価格をつけ,消費者が価格比較をする場合の利得表を書く問題があります。) (2)混合戦略まで含めたナッシュ均衡を求めよ。また,このゲームのナッシュ均衡はどのように解釈できるか。 混合戦略を考える場合は,消費者がチラシを比較しない確率をp,スー パーが高価格をつける確率をqとして計算すること。

共感・応援の気持ちを伝えよう!

  • 回答数3
  • 閲覧数411
  • ありがとう数0

みんなの回答

  • 回答No.3

前のときもそう思ったのだけど、 これは問題文に誤りがあるんじゃないだろうか? 「ゲーム理論」になっていないと思うのですがね・・・。  本職が問題作っているのかな? No.2さんと同じ事をσ(・・*)も考えるのだけれど、 チラシを比較したときに、スーパーAが最低価格をつけていれば(これは条件です) おそらくAで卵を買うんでしょうね。 最低価格でないのなら、Aでは買わない(これも条件なんだけど)はずなんだよね。 ここが明確じゃないからね、釈然としない・・・。 もう一点挙げさせてもらうと、チラシをチェックして、Aが最安値だったときに、 「時間の浪費」と、見るのはどうなのかなぁ? チラシを確認する確率、しない確率なんてのがでてくるから、無理っぽい問題になっているのかな? これが本当に「問題文そのまま」とはちょっと思い辛いけれど。 上記の条件が暗黙であるとして、利得表はかけるのだろうけれど、 それだけでも軽くあげてもらえないだろうか? そっちが先だと思うよ。どこがどう躓いていると言うのは分かると思うから。 (=^. .^=) m(_ _)m (=^. .^=) 正直ね、こういう問題は国語力がものを言ってくるから、 文系さんのほうが強くても不思議はないんだけどね。

共感・感謝の気持ちを伝えよう!

  • 回答No.2
  • okormazd
  • ベストアンサー率50% (1224/2411)

私の勘違いかもしれないが、 質問に間違いがなければ、出題者も「文系脳」のようです。 1. 「消費者がチラシ比較をすると,安いスーパーで購入することになる」 チラシ比較するということは、安いスーパーがどこかを調べることであって、Aが低価格をつけたからといってもそれが安い方とは限らないから、チラシ比較してどこで購入することになるのかがわからない。質問の問題そのままだと、チラシ比較の有無にかかわらず、Aで購入するようになっているように見える。チラシを比較した結果、Aで購入する確率がいくつとか指定しないとわけがわからない問題になる。 2. 「チラシ比較をしたときよりも利得は低くなり3となる」 これも何のことかわからない。「消費者がチラシ比較をすると,安いスーパーで購入することになる。したがって、このときスーパーが高価格をつけると,スーパーの利得は 0 となり,低価格をつけた場合は 2 の利得を得る。」 といっているのだから、これと矛盾してないか。 「利得表はなんとかかけ」るらしいので、それを示したほうがいい。 私には、上記の理由でそれができない。無理に書いても納得ができない。 以前にも同じ質問をしていたし、今回は、丁寧に2重に書いている部分もあるが、何回書いてもわけのわからないことには代わりが無い。 これでは適切な回答は得られないと思うが。

共感・感謝の気持ちを伝えよう!

  • 回答No.1

文系脳の能力の限りを尽くした中間結果を補足なさった上で、どこがどう分からんのか、文系ならではの香しき文章で仔細にご説明下さいませ。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 急いでます!!!

    ある食品スーパと消費者とのゲームを考えよう。食品スーパは卵を高価格で販売するか低価格で販売するかを選択し、消費者は近隣のスーパの価格を比較して安いところで購入するか、調べずにこのスーパで購入するかを選択している状況を想定しよう。このとき、両プレーヤーの利得表は次のように成っている。ここで、消費者が価格を調べる確率をp、価格を調べない確率を(1-p), スーパが高価格を設定する確率をq, 低価格を設定する確率を(1-q)とする。ただし、pとqは確率ですから、0 p 1,0 q 1という 範囲内の値である。 ゲームの利得表                            スーパー             高価格 低価格  消費者    調べない (1,5) (4,2)         調べる (2,5) (3,2) ただし、表1の括弧内の第1項は消費者の利得、第2項はスーパの利得を表す。 1. 表1を利用して消費者の利得の期待値とスーパの利得の期待値を求めなさい。 【回答欄】 (1)消費者の利得の期待値 (2)スーパの利得の期待値

  • 混合戦略ナッシュ均衡について

       D    E A(2,2)  (4,8) B(5,6)  (3,3) という利得表の同時手番ゲームを考える問題についてなのですが、この場合の純粋戦略って(4,8)(5,6)ですよね。 そして混合戦略ナッシュ均衡を含めて考えた時、プレイヤー1と2の最適反応(赤=1、青=2)を図示したのですが以下のようになりました。(プレイヤー1がAを取る確率p、2がDを取る確率q) 下の図で丸を付けた箇所が均衡なのは知っているんですが、この場合答えの表記の仕方はどうなるんでしょうか・・?また、純粋戦略で求めた以外での混合戦略ナッシュ均衡において実現する量プレイヤーの期待利得を求めよ。との問いもあるのですが、だんだんわからなくなってきました・・。お時間のある方どうぞよろしくお願いいたします。

  • 混合戦略のナッシュ均衡について

    次のような問題です。 プレイヤー1は確率pでUを、確率1-pでDを選択する。 同様に、プレイヤー2は確率qでLを、確率1-qでRを選択する。 (プレイヤー1の利得、プレイヤー2の利得)は UかつL→(1,1) UかつR→(1,0) DかつL→(0,1) DかつR→(-1,-1)である。 このとき、混合戦略でのナッシュ均衡(p*,q*)を求めよ。 プレイヤー1の反応関数を求めるとR1(q)=(2-p)q+1-pとなって、最適なp*が1を超えてしまい、詰まってしまいました。 どのように解けばいいのでしょうか…回答よろしくお願いします。

  • ナッシュ均衡について

    戦略型ゲームG1を以下のように定義する。 ・プレイヤーは1と2の二名 ・プレイヤーi(i=1、2)の戦略集合は0以上1以下の実際の集合。すなわち、{x|x∈R、0≦x≦1} ・各プレイヤーの利得は以下のように決定される: プレイヤーi(i=1、2)が戦略xiを選んだとする。この時x1+x2≦1ならば、xiの値 がそのままプレイヤーiの利得となる。x1+x2>1ならば、両者の利得は0となる。 このゲームの純粋戦略ナッシュ均衡をすべて求めよ。 下の戦略型ゲームG2の混合戦略ナッシュ均衡をすべて求めよ。(被強支配戦略の繰り返し削除に注意)    a b c A(1,3) (3,0) (2,-1) B(3,0) (2,6) (0,2) C(0,4) (1,0) (3,-1) この二つの問題がまったくわかりません。解き方と答えがもしわかる方いましたら教えてください。 お願いします。  

  • 3×2行列の混合戦略のナッシュ均衡の問題

    1 / 2 戦略1 戦略2 戦略1 4,0 2,5 戦略2 1,2 5,1 戦略3 2,6 3,3 この混合戦略のナッシュ均衡を解くことができません。 1が戦略1・2・3をとる確率をそれぞれp、q、1-p-q、2が戦略1・2をとる確率をs、1-sとおいて、期待利得を導くまではできるのです。 1の期待利得 戦略1:4s+2(1-s)=2s+2 戦略2:s+5(1-s)=-4s+5 戦略3:2s+3(1-s)=-s+3 2の期待利得 戦略1:2q+6(1-p-q)=-6p-4q+6 戦略2:5p+q+3(1-p-q)=2p-2q+3 まず1ですが、期待利得が2種類である2×2行列と違って、期待利得が3種類存在します。 また、2については変数がp・qの2種類あるので、どう処理してよいものかわかりません。 支配戦略が存在しないので、消去して2×2行列にするわけでもなさそうです。 ここから先の解法を教えてください。よろしくお願いします。

  • ゲーム理論

    混合戦略の範囲でのナッシュ均衡 けんとたけしという2人がいます。 けんとたけしは共に混合戦略をとり、けんが純粋戦略uをとる確率p(0≦p≦1) たけしがとる純粋戦略Lをとる確率q(0≦q≦1) 以上の条件があって けんとたけしがとる戦略によってとる利得は次のようになる。 けん;(u,L)=(a,b) (u,R)=(0,0) たけし;(D,L)=(0,0) (D,R)=(c,d) ただしa,b,c,dは正の定数 このとき 混合戦略の範囲でナッシュ均衡はありますか?

  • ゲーム理論

    たぶん囚人のジレンマの問題だと思うのですが、先日の情報検定/除法システム試験/システムデザインに出題されました。 マクシミン戦略が最悪の場合の利益は分かるのですが、 添付した、図の見方が分かりません。 ゲーム理論では,複数のプレイヤが存在し,それぞれの行動が影響を及ぼしあう状 況を「ゲーム」ととらえ,そのゲームにおいて,各人の利益にもとづいて相手の行動 を予測し,意思決定を行う。また,実際の戦略においては,相手の行動(将来の状況) を完全に予測することが不可能であり,将来の不確実性を判断する基準にもとづいて, 戦略を決定する。 <設問1> 2人(X氏・Y氏)がそれぞれ2種類の戦略をとる場合の利得が表1のよ うに予想されるとき,次の記述中の (1) に入れるべき適切な字句を解答群から 選べ。 マクシミン戦略において両者の戦略をそれぞれ変えながら各利得を求めてみる。こ こで,表の各欄において,左側の数値がX氏の利得,右側がY氏の利得とする。 X氏の利得は,戦略x1 をとったとき (1) となり,戦略x2 をとったとき (2) となり,両者を比較してより利得の大きい戦略を選択する。同様にY氏の 利得は,戦略y1 をとったとき (3) となり,戦略y2 をとったとき (4) とな り,両者比較してより利得の大きい戦略を選択する。よって, (5) ことになり, (6) となる。 答えは、1:エ 2:イ 3:ウ 4:ア 5:エ  6:イ です。 この手の問題には素人なので、詳しい解説をよろしくお願いします。

  • 偽装大国日本 悪いのは・・・

    最近 数ある食品の偽装。 悪いのは誰だと思いますか? 価格ばかりを気にする消費者 低価格での納入を求める小売業(スーパーなど) わからなければ、利益を出す為なら何をしてもいいと思ってる生産者 そう思う理由もよろしくお願いします。

  • 無限繰り返しゲームについて教えてください

     両者がとりうる戦略はこの2つ。   企業b   高価格     低価格 企 (15.15) (0.0) 業  A (30.0)  (5.5)  このゲームが無限に繰り返される状況を考える。割引因子δ(0<δ<1)とし、各企業はトリガー戦略をとることと仮定する。トリガー戦略がこの繰り返しゲームのナッシュ均衡となるための、割引因子δの範囲を求めよ。という問題なのですが、教科書やパソコンで調べても全く分かりません。よかったらどなたか教えてください。おねがいします。

  • ゲーム理論 

    恥ずかしながら追試ということになってしまいそうなので、期末試験問題を復習しようと考えています。 そこで皆様に解説と回答をお教えいただきたく、質問させていただきます。 以下の文章の正誤を応えよ (1)「後出しじゃんけん」のようなゲームはゲームの木で表現すると、手番の時間的推移がわかりやすく理解しやすい。 (2)ゲームの木を使って表現するとき、同じ情報集合に含まれる意思決定節からは必ず同じ数の枝が出ていなければならない。 (3)男女のジレンマゲームは各プレイヤーが支配戦略を一つずつ持っている。 (4)協調の失敗とは、タカハトゲームのように相互に利益をもたらす戦略の組がナッシュ均衡として実現されないことをいう。 (5)すべての情報集合に意思決定節が一つしか含まれていない情報構造のゲームを、完全情報ゲームという。 (6)囚人のジレンマゲームを逐次手番でプレイすれば、ジレンマを解消できる。 (7)ナッシュ均衡はすべてのプレイヤーが単独で戦略を変更するインセンティヴを持たないことを保証するだけであり、複数のプレイヤーが協力して戦略を変更すれば互いに利得を改善できる可能性がある。 (8)ナッシュ均衡の中にプレイヤーのから脅しによって成立すると解釈できるものが含まれるのは、戦略の組み合わせが均衡経路外に対しても最適反応であることが必須だからである。 (9)いわゆる「ペナルティキック」ゲームには純粋戦略のナッシュ均衡は存在しない。 (10)混合戦略のナッシュ均衡において行動Aと行動Bをランダムに選択しているプレイヤーが、どちらか一方の行動だけを選択する純粋戦略に変更しても、そのプレイヤーの期待利得は変わらない。 自分の回答は ○、×、×、○、×、×、○、○、○、× でした。 特に5~10がよくわからないです。解説と回答よろしくお願いします。