• 締切済み
  • すぐに回答を!

ゲーム理論

戦略型ゲームGの混合戦略ナッシュ均衡をすべて求めよ。   a  b   c A 1,3 3,0 2,-1 B 3,0 2,6 0,2 C 0,4 1,0 3,-1 ※被強支配戦略の繰り返し消去に注意

共感・応援の気持ちを伝えよう!

  • 回答数3
  • 閲覧数246
  • ありがとう数1

みんなの回答

  • 回答No.3
noname#125986
noname#125986

前の回答は間違い。 ↓この質問も二重投稿。 http://soudan1.biglobe.ne.jp/qa6494954.html

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • ゲーム理論

    N 人のプレイヤーによる次のようなゲームを考える(N ≥ 2).各プレイヤーにはまず最 初に 1000 円が与えられる.各プレイヤーは,これを保持する(R)か,募金する(C)かを同時 手番で選択する.募金されたお金は合計して 2 倍に増額された後,Rを選んだかCを選んだかに関 わらず,すべてのプレイヤーに均等に山分けされる. 1.一般に N ≥ 3 のとき,ナッシュ均衡になる戦略の組をすべて明らかにしなさい. 2.なぜ 1.で述べた戦略の組はナッシュ均衡になるのか.「支配戦略」という言葉を用いて,直 観的に説明しなさい. 3.このゲームを実際に被験者にプレイさせる実験を行うと,必ずしも1.のようなナッシュ均衡の 戦略がとられないという結果がしばしば観察されるという。実験の結果がナッシュ均衡 に一致しないとすれば,それはなぜだと考えられるか.自分の考えを述べなさい. 以上です。1.は3人以上のプレイヤーのナッシュ均衡の考え方、表記の仕方がわからず苦戦しています。2.は支配戦略=相手がどの戦略できても最適である戦略、という言葉を1.を踏まえた上でどう使えばいいのかわからずにまた苦戦中、3.はおそらくフリーライダーの話でせめていけばいいのかな、と思いながらもどう書けばいいのかわからない状態です。 どうかお力添え頂ければと思います。よろしくお願い致します。

  • ゲーム理論 

    恥ずかしながら追試ということになってしまいそうなので、期末試験問題を復習しようと考えています。 そこで皆様に解説と回答をお教えいただきたく、質問させていただきます。 以下の文章の正誤を応えよ (1)「後出しじゃんけん」のようなゲームはゲームの木で表現すると、手番の時間的推移がわかりやすく理解しやすい。 (2)ゲームの木を使って表現するとき、同じ情報集合に含まれる意思決定節からは必ず同じ数の枝が出ていなければならない。 (3)男女のジレンマゲームは各プレイヤーが支配戦略を一つずつ持っている。 (4)協調の失敗とは、タカハトゲームのように相互に利益をもたらす戦略の組がナッシュ均衡として実現されないことをいう。 (5)すべての情報集合に意思決定節が一つしか含まれていない情報構造のゲームを、完全情報ゲームという。 (6)囚人のジレンマゲームを逐次手番でプレイすれば、ジレンマを解消できる。 (7)ナッシュ均衡はすべてのプレイヤーが単独で戦略を変更するインセンティヴを持たないことを保証するだけであり、複数のプレイヤーが協力して戦略を変更すれば互いに利得を改善できる可能性がある。 (8)ナッシュ均衡の中にプレイヤーのから脅しによって成立すると解釈できるものが含まれるのは、戦略の組み合わせが均衡経路外に対しても最適反応であることが必須だからである。 (9)いわゆる「ペナルティキック」ゲームには純粋戦略のナッシュ均衡は存在しない。 (10)混合戦略のナッシュ均衡において行動Aと行動Bをランダムに選択しているプレイヤーが、どちらか一方の行動だけを選択する純粋戦略に変更しても、そのプレイヤーの期待利得は変わらない。 自分の回答は ○、×、×、○、×、×、○、○、○、× でした。 特に5~10がよくわからないです。解説と回答よろしくお願いします。

  • ゲーム理論

    混合戦略の範囲でのナッシュ均衡 けんとたけしという2人がいます。 けんとたけしは共に混合戦略をとり、けんが純粋戦略uをとる確率p(0≦p≦1) たけしがとる純粋戦略Lをとる確率q(0≦q≦1) 以上の条件があって けんとたけしがとる戦略によってとる利得は次のようになる。 けん;(u,L)=(a,b) (u,R)=(0,0) たけし;(D,L)=(0,0) (D,R)=(c,d) ただしa,b,c,dは正の定数 このとき 混合戦略の範囲でナッシュ均衡はありますか?

  • 回答No.2
noname#125986
noname#125986

↓以前の質問でもらった回答を全く無視してますね。 http://soudan1.biglobe.ne.jp/qa6490170.html ↓第2の質問はこれと全く同じ。 http://soudan1.biglobe.ne.jp/qa6494144.html

共感・感謝の気持ちを伝えよう!

  • 回答No.1
noname#125986
noname#125986

指示通り、強支配される戦略を消去しよう。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • ゲーム理論

    数学のテキストの中に、ゲーム理論を扱う部分があり、そこに性比ゲームが出てきました。が、どういうゲームの設定なのかが解説されておらず、いきなり式を展開されて、よく理解できません。 一般的に、性比ゲームというのはどのようなルールの下で行われるゲームなのでしょうか?漠然とした質問ですみません。 それと、いくつかの純戦略をある割合で混合した戦略を用いるゲームで「最適反応はいくつかの純戦略を必ず含む」「強意のナッシュ均衡が存在する場合、それは純戦略である」とあったのですが、それは何故ですか?

  • ゲーム理論の混合戦略の求め方

    混合戦略についての質問です。 a b A 3,2 0,0 B 0,2 3,1 C 1,0 1,3 このゲームの混合戦略が分かりません。 解答には「A,B,Cをそれぞれ1/2,1/2,0の確率でとる 」という混合戦略が、純粋戦略Cを強く支配するとあるのですが、なぜこうなるのか分かりません。 どなたか分かる方、教えてください。よろしくお願いします。

  • ナッシュ均衡について

    戦略型ゲームG1を以下のように定義する。 ・プレイヤーは1と2の二名 ・プレイヤーi(i=1、2)の戦略集合は0以上1以下の実際の集合。すなわち、{x|x∈R、0≦x≦1} ・各プレイヤーの利得は以下のように決定される: プレイヤーi(i=1、2)が戦略xiを選んだとする。この時x1+x2≦1ならば、xiの値 がそのままプレイヤーiの利得となる。x1+x2>1ならば、両者の利得は0となる。 このゲームの純粋戦略ナッシュ均衡をすべて求めよ。 下の戦略型ゲームG2の混合戦略ナッシュ均衡をすべて求めよ。(被強支配戦略の繰り返し削除に注意)    a b c A(1,3) (3,0) (2,-1) B(3,0) (2,6) (0,2) C(0,4) (1,0) (3,-1) この二つの問題がまったくわかりません。解き方と答えがもしわかる方いましたら教えてください。 お願いします。  

  • ゲーム理論の問題です

    利得表を見て解く問題なのですが、 文系脳の自分ではどうしても自力で解ききれる 気がしません。どうかよろしくお願いします。 ・以下の利得表で表されるゲームの解を,厳密に支配される戦略の消去によって導け。 各プレイヤーは,ゲーム の構造(プレイヤー,戦略,利得)を知っていて, お互いが合理的であることをお互いに知っているという,完備情報で共有知識があると いうことを前提に考えよ。 (利得表は手抜きです。申し訳ありません。) (A・B) X   Y   Z    X [3,0][4,1][2,5]    Y [4,3][6,2][3,1]    Z [2,-2][5,0][8,-1]

  • ゲーム理論

    戦略型ゲームGを以下のように定義する。 ・プレイヤーは1と2の2名。 ・プレイヤーi(i=1,2)の戦略集合は0以上1以下の実数の集  合、すなわち、{X|X∈R,0≦X≦1} ・各プレイヤーの利得は以下のように決定される。  プレイヤーi(i=1,2)が戦略Xiを選んだとする。このとき  X1+X2≦1ならば、Xiの値がそのままプレイヤーiの利得とな る。X1+X2>1ならば、両者とも利得は0となる。 このゲームGの純粋戦略ナッシュ均衡をすべて求めよ。 この解き方と解答を教えてください。

  • ゲーム理論の問題です

    プレイヤーは1と2の2名です。 ・プレイヤーi(i=1、2)の戦略集合は0以上1以下の実際の集合。すなわち、{x|x∈ R、0≦x≦1} ・各プレイヤーの利得は以下のように決定される: プレイヤーi(i=1、2)が戦略xiを選んだとする。この時x1+x2≦1ならば、xiの値 がそのままプレイヤーiの利得となる。x1+x2>1ならば、両者の利得は0となる。 このゲームの純粋戦略ナッシュ均衡をすべて求めよ。

  • ゲーム理論 復習

    手詰まりでわかりません。よろしければ教えてください。 企業1と企業2は互いに代替的な製品を生産し販売している。企業xが設定した製品価格をPx万円(x=1、2)としたとき、それぞれの製品に対する需要量は D1=A-P1+P2 D2=A-P2+p1  (Aは正の定数) また各社はそれぞれ生産1あたりにC万円の費用がかかる(A>Cとする)。各社は同時手番でそれぞれの利潤を最大化するように自社製品の価格を設定する。 [1]このゲームを一度だけプレイ (1)企業2の製品価格がP2と予想されるときの企業1の反応関数を求めよ (2)ナッシュ均衡での各社の製品価格として正しいのはどれか。 (3)ナッシュ均衡で各社が獲得する利益はいくらか、 (4)企業1がプライスリーダーとする。企業1が先に戦略を決め、それを見た後で企業2が戦略を決める。そのとき部分ゲーム完全なナッシュ均衡でプレイヤー1が設定する製品価格を求めよ。 (5)(4)のとき企業2の設定する製品価格を求めよ。 [2]上記の手番ゲームが無限回繰り返され、毎回の段階ゲームの結果は次の段階ゲームが始まる前に、各企業に観察されるものとする。各企業は共通の割引因子σ(0<σ<1)を用いて各段階ゲームで割引現在価値を最大にするように戦略を選ぶ。各企業はトリガー戦略(戦略Xと呼ぶ)用いることによって均衡経路上では毎回必ずP=2A+Cという製品価格を実現させようとする。戦略Xでは以下のように指定されている。 ・第一回目の段階ゲームおよび過去に互いに設定し続けて迎えた段階ゲームでは価格をP*に設定する。 ・上記以外の段階ゲームでは(2)で求めた価格を設定する。 今企業2が戦略Xをとると予想したとき、企業1が一回目の段階ゲームで戦略X から逸脱すればP1を(6)に設定することが短期的には最適である。逸脱によって得られる利潤の増加分は(7)である。しかしそれを踏まえ企業2も行動が変化するので、二回目以降の毎回の段階ゲームで企業1の獲得する利潤が、先の逸脱によって、少なくとも(8)万円減る。その結果逸脱によって(9)万円の長期的な損失を発生させる。したがって互いに戦略Xをとり続ける必要十分条件は(10)以上の割引因子をもつことである。 (1)~(10)に答えよ。 という問題です。長いですが、考え方と解答を教えて頂ければと思います。よろしくお願いします。

  • ゲーム理論について

    以下の各ゲーム均衡(ナッシュ均衡と部分ゲーム完全均衡)を求めよ。 解答は均衡におけるAとBの利得を記入。 という問題なのですがどなたかわかる方いらっしゃいませんか。

  • 3×2行列の混合戦略のナッシュ均衡の問題

    1 / 2 戦略1 戦略2 戦略1 4,0 2,5 戦略2 1,2 5,1 戦略3 2,6 3,3 この混合戦略のナッシュ均衡を解くことができません。 1が戦略1・2・3をとる確率をそれぞれp、q、1-p-q、2が戦略1・2をとる確率をs、1-sとおいて、期待利得を導くまではできるのです。 1の期待利得 戦略1:4s+2(1-s)=2s+2 戦略2:s+5(1-s)=-4s+5 戦略3:2s+3(1-s)=-s+3 2の期待利得 戦略1:2q+6(1-p-q)=-6p-4q+6 戦略2:5p+q+3(1-p-q)=2p-2q+3 まず1ですが、期待利得が2種類である2×2行列と違って、期待利得が3種類存在します。 また、2については変数がp・qの2種類あるので、どう処理してよいものかわかりません。 支配戦略が存在しないので、消去して2×2行列にするわけでもなさそうです。 ここから先の解法を教えてください。よろしくお願いします。

  • テストのミクロがわからなくて困っています。助けてください。

    個人A,Bがそれぞれ2種類の戦略を持つゲームの利得行列が    B,1   B,11 A,1 (3,3) (0,4) A,11(4,0)(1,1) この小()は大()で、一まとまりになっていなす。 で与えられている。但し、(a,b)は、個人Aの利得がaで個人Bの利得がbであることを意味する。 (1)戦略11は個人A,Bの支配戦略であることを示せ。 (2)このゲームのナッシュ均衡をすべて求めよ。 (3)このゲームは囚人のジレンマと呼ばれる状況になっていることを説明せよ。 この問題を、どうか教えてください。お願いします。