• ベストアンサー
  • すぐに回答を!

3×2行列の混合戦略のナッシュ均衡の問題

1 / 2 戦略1 戦略2 戦略1 4,0 2,5 戦略2 1,2 5,1 戦略3 2,6 3,3 この混合戦略のナッシュ均衡を解くことができません。 1が戦略1・2・3をとる確率をそれぞれp、q、1-p-q、2が戦略1・2をとる確率をs、1-sとおいて、期待利得を導くまではできるのです。 1の期待利得 戦略1:4s+2(1-s)=2s+2 戦略2:s+5(1-s)=-4s+5 戦略3:2s+3(1-s)=-s+3 2の期待利得 戦略1:2q+6(1-p-q)=-6p-4q+6 戦略2:5p+q+3(1-p-q)=2p-2q+3 まず1ですが、期待利得が2種類である2×2行列と違って、期待利得が3種類存在します。 また、2については変数がp・qの2種類あるので、どう処理してよいものかわかりません。 支配戦略が存在しないので、消去して2×2行列にするわけでもなさそうです。 ここから先の解法を教えてください。よろしくお願いします。

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数4262
  • ありがとう数1

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
  • f272
  • ベストアンサー率45% (5657/12312)

> 1の期待利得 戦略1:4s+2(1-s)=2s+2 戦略2:s+5(1-s)=-4s+5 戦略3:2s+3(1-s)=-s+3 ここから プレイヤー1の利得は p(2s+2)+q(-4s+5)+(1-p-q)(-s+3)=p(5+s)+q(8-5s)+(3-s) になるので プレイヤー1の最適反応戦略は s>1/2のときはp=1、q=0で戦略1 s<1/2のときはp=0、q=1で戦略2 s=1/2のときはp+q=1で戦略1または戦略2 となります 同様に プレイヤー2の利得は s(-6p-4q+6)+(1-s)(2p-2q+3)=s(3-8p-2q)+(3+2p-2q) になるので プレイヤー2の最適反応戦略は 8p+2q<3のときはs=1で戦略1 8p+2q>3のときはs=0で戦略2 8p+2q=3のときはs=不定で戦略1または戦略2 となります ここから p=1/6、q=5/6、s=1/2 が導かれるでしょう。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

回答ありがとうございます。 まずプレイヤー1の最適反応戦略ですが、なぜs=1/2を基準に分かれるのでしょうか? あと、s=1/2が確定したとして、8p+2q=3だけではp、qの値を確定できないと思うのですが、どうやってp=1/6とq=5/6を求めるのでしょうか?

質問者からの補足

すみません。自己解決しました。 ありがとうございました。

関連するQ&A

  • 混合戦略ナッシュ均衡について

       D    E A(2,2)  (4,8) B(5,6)  (3,3) という利得表の同時手番ゲームを考える問題についてなのですが、この場合の純粋戦略って(4,8)(5,6)ですよね。 そして混合戦略ナッシュ均衡を含めて考えた時、プレイヤー1と2の最適反応(赤=1、青=2)を図示したのですが以下のようになりました。(プレイヤー1がAを取る確率p、2がDを取る確率q) 下の図で丸を付けた箇所が均衡なのは知っているんですが、この場合答えの表記の仕方はどうなるんでしょうか・・?また、純粋戦略で求めた以外での混合戦略ナッシュ均衡において実現する量プレイヤーの期待利得を求めよ。との問いもあるのですが、だんだんわからなくなってきました・・。お時間のある方どうぞよろしくお願いいたします。

  • 混合戦略のナッシュ均衡について

    次のような問題です。 プレイヤー1は確率pでUを、確率1-pでDを選択する。 同様に、プレイヤー2は確率qでLを、確率1-qでRを選択する。 (プレイヤー1の利得、プレイヤー2の利得)は UかつL→(1,1) UかつR→(1,0) DかつL→(0,1) DかつR→(-1,-1)である。 このとき、混合戦略でのナッシュ均衡(p*,q*)を求めよ。 プレイヤー1の反応関数を求めるとR1(q)=(2-p)q+1-pとなって、最適なp*が1を超えてしまい、詰まってしまいました。 どのように解けばいいのでしょうか…回答よろしくお願いします。

  • ナッシュ均衡について

    戦略型ゲームG1を以下のように定義する。 ・プレイヤーは1と2の二名 ・プレイヤーi(i=1、2)の戦略集合は0以上1以下の実際の集合。すなわち、{x|x∈R、0≦x≦1} ・各プレイヤーの利得は以下のように決定される: プレイヤーi(i=1、2)が戦略xiを選んだとする。この時x1+x2≦1ならば、xiの値 がそのままプレイヤーiの利得となる。x1+x2>1ならば、両者の利得は0となる。 このゲームの純粋戦略ナッシュ均衡をすべて求めよ。 下の戦略型ゲームG2の混合戦略ナッシュ均衡をすべて求めよ。(被強支配戦略の繰り返し削除に注意)    a b c A(1,3) (3,0) (2,-1) B(3,0) (2,6) (0,2) C(0,4) (1,0) (3,-1) この二つの問題がまったくわかりません。解き方と答えがもしわかる方いましたら教えてください。 お願いします。  

  • ゲーム理論の混合戦略の求め方

    混合戦略についての質問です。 a b A 3,2 0,0 B 0,2 3,1 C 1,0 1,3 このゲームの混合戦略が分かりません。 解答には「A,B,Cをそれぞれ1/2,1/2,0の確率でとる 」という混合戦略が、純粋戦略Cを強く支配するとあるのですが、なぜこうなるのか分かりません。 どなたか分かる方、教えてください。よろしくお願いします。

  • テストのミクロがわからなくて困っています。助けてください。

    個人A,Bがそれぞれ2種類の戦略を持つゲームの利得行列が    B,1   B,11 A,1 (3,3) (0,4) A,11(4,0)(1,1) この小()は大()で、一まとまりになっていなす。 で与えられている。但し、(a,b)は、個人Aの利得がaで個人Bの利得がbであることを意味する。 (1)戦略11は個人A,Bの支配戦略であることを示せ。 (2)このゲームのナッシュ均衡をすべて求めよ。 (3)このゲームは囚人のジレンマと呼ばれる状況になっていることを説明せよ。 この問題を、どうか教えてください。お願いします。

  • 混合戦略の期待利得の求め方

    混合戦略に関する問題で期待利得の求め方なのですが たとえば戦略が2つの時は、利得は適当に4と6とでも置きまして 戦略1を選ぶ確立をp、戦略2を選ぶ確立を(1-p)で 4*p+6*(1-p)と成りますよね? 戦略2つまでなら理解できるのですが戦略3つ以上となるとどの様な式になるのでしょうか? 数学に疎くて全く分かりません、先に進めず困っています 分かる方教えてください

  • 数学と戦略

    戦略に関する質問です。 次のような戦略ゲームを考えます。 1、2という人物がいて、1については戦略u,D,2については戦略L,R を取ると考えて 以下戦略のとり方によって利得は次のようになります 左から1、2の取る戦略として (u,L)=(a[1],a[2]),(u,R)=(b[1],b[2]) (D,L)=(c[1],c[2]),(D,R)=(d[1],d[2]) このとき (1)戦略(u,L)がナッシュ均衡である (2)a[1]=c[1]のとき純粋戦略ナッシュ均衡が存在する これらがどうして成り立つのか理解できません。

  • ナッシュ均衡の問題です

    数学の課題で、二問構成です。 利得表はなんとかかけそうなのですが、文系脳の自分ではどうしても正解できそうにないのでどうかよろしくお願いいたします。 〈スーパーA と消費者 B のゲームを考える。〉 スーパーは,卵 1 パックを高価格で販売する か,低価格で販売するかを考えている。 消費者 B は,近隣のスーパーの価格を比べて安いところで購入するか、調べないでこのスーパーA で購入するかを選択する。 ・消費者がチラシ比較をしない場合はこのスーパーで購入することになる。 このとき,ス ーパーが高価格つけているとすると,消費者の利得は 1 となり,低価格をつけると 4 の 利得を得るとする。一方,スーパーは高価格のときは 5、低価格のときは 2 の利得を得 る。 消費者がチラシ比較をすると,安いスーパーで購入することになる。したがって、このときスーパーが高価格をつけると,スーパーの利得は 0 となり,低価格をつけた場合は 2 の利得を得る。 消費者側は,スーパーA が高価格をつけていた場合は,チラシ比較を して得したことになるので 2 の利得を得る。 また,低価格をつけていた場合は,チラシ 比較しなくてもよかったので時間を浪費した分,チラシ比較をしたときよりも利得は低くなり 3 となる。 ・消費者がチラシ比較をすると,安いスーパーで購入することになる。 したがって,この ときスーパーが高価格をつけると,スーパーの利得は 0 となり,低価格をつけた場合は 2 の利得を得る。 消費者側は,スーパーA が高価格をつけていた場合は,チラシ比較を して得したことになるので 2 の利得を得る。 また,低価格をつけていた場合は,チラシ 比較しなくてもよかったので時間を浪費した分,チラシ比較をしたときよりも利得は低くなり3となる。 (第一問にスーパーが低下価格をつけ,消費者が価格比較をする場合の利得表を書く問題があります。) (2)混合戦略まで含めたナッシュ均衡を求めよ。また,このゲームのナッシュ均衡はどのように解釈できるか。 混合戦略を考える場合は,消費者がチラシを比較しない確率をp,スー パーが高価格をつける確率をqとして計算すること。

  • ゲーム理論

    混合戦略の範囲でのナッシュ均衡 けんとたけしという2人がいます。 けんとたけしは共に混合戦略をとり、けんが純粋戦略uをとる確率p(0≦p≦1) たけしがとる純粋戦略Lをとる確率q(0≦q≦1) 以上の条件があって けんとたけしがとる戦略によってとる利得は次のようになる。 けん;(u,L)=(a,b) (u,R)=(0,0) たけし;(D,L)=(0,0) (D,R)=(c,d) ただしa,b,c,dは正の定数 このとき 混合戦略の範囲でナッシュ均衡はありますか?

  • 混合戦略の求め方を教えて下さい!(非ゼロ和ゲーム)

    A,Bの2人がいる非ゼロ和ゲームにおいて (A,B) (ドラマ、ドラマ)=(7,3) (ドラマ、バラエティ)=(4,6) (バラエティ、ドラマ)=(5,5) (バラエティ、バラエティ)=(6,4) という利得行列があります。 これについて、混合戦略を求めたいのですが、 Aがドラマを選択する確率をp、バラエティを1-p Bがドラマを選択する確率をq、バラエティを1-q とすると、 E(A)=7pq+5(1-p)q+4p(1-q)+6(1-p)(1-q) =7pq+5q-5pq+4p-4pq+6-6q-6p+6pq =4pq-q-2p+6 =(4p-1)q-2(p-3) ∴0≦p≦1/4 とここまでは分かったのですが、答えをどう出せばいいのかわかりません。 qの範囲も出した方がいいのでしょうか? そして、このpの範囲は、何の意味があるのでしょうか? どなたか、教えて下さい!!