• 締切済み

ゲーム理論

混合戦略の範囲でのナッシュ均衡 けんとたけしという2人がいます。 けんとたけしは共に混合戦略をとり、けんが純粋戦略uをとる確率p(0≦p≦1) たけしがとる純粋戦略Lをとる確率q(0≦q≦1) 以上の条件があって けんとたけしがとる戦略によってとる利得は次のようになる。 けん;(u,L)=(a,b) (u,R)=(0,0) たけし;(D,L)=(0,0) (D,R)=(c,d) ただしa,b,c,dは正の定数 このとき 混合戦略の範囲でナッシュ均衡はありますか?

みんなの回答

  • B-juggler
  • ベストアンサー率30% (488/1596)
回答No.2

せめて締め切ってね。 えっと、ゲーム理論は専門だけど(代数学の非常勤でした)、 たけしさんの D って何? こういう説明が抜けていると、解答できないよ? もう一つは、NO.1さんも書かれてあるけど、 (利得)=(けんの利得)+(たけしの利得)が定義されていないから、  #戦略云々の前の話し。 利得はほかに行かない!というのを書いてないと。 ほかに行かなくて、Dがちょっと分からないけど、 D=u だと考えれば、ナッシュ均衡は存在します。 正の定数でしょう? 必ずグラフは書けるから。  #確率が虚数になることもないしね。 こういうのは閉めないとね。もう終わっているはずだよ。 m(_ _)m

すると、全ての回答が全文表示されます。
  • arrysthmia
  • ベストアンサー率38% (442/1154)
回答No.1

二人完全情報ゲームの混合戦略には、ナッシュ均衡が存在します。 (ブラウワーの不動点定理) 具体的な求め方は、 q 一定という条件下にケンの利得を最大にする p を、q の関数として表し、 p 一定という条件下にタケシの利得を最大にする q を、p の関数として表し、 (p, q) 平面上で、両グラフの交点を求めればよい。 質問文で、利得行列の書き方が何だかわからないのですが、 (u,L)=(a,b) というのは、ケンが戦略 u タケシが戦略 L を採ったとき、 ケンの利得が a タケシの利得が b という意味なのでしょうか? ところで、 http://oshiete1.goo.ne.jp/qa4294609.html は、どうなりましたか?

すると、全ての回答が全文表示されます。

関連するQ&A

  • 混合戦略のナッシュ均衡について

    次のような問題です。 プレイヤー1は確率pでUを、確率1-pでDを選択する。 同様に、プレイヤー2は確率qでLを、確率1-qでRを選択する。 (プレイヤー1の利得、プレイヤー2の利得)は UかつL→(1,1) UかつR→(1,0) DかつL→(0,1) DかつR→(-1,-1)である。 このとき、混合戦略でのナッシュ均衡(p*,q*)を求めよ。 プレイヤー1の反応関数を求めるとR1(q)=(2-p)q+1-pとなって、最適なp*が1を超えてしまい、詰まってしまいました。 どのように解けばいいのでしょうか…回答よろしくお願いします。

  • 数学と戦略

    戦略に関する質問です。 次のような戦略ゲームを考えます。 1、2という人物がいて、1については戦略u,D,2については戦略L,R を取ると考えて 以下戦略のとり方によって利得は次のようになります 左から1、2の取る戦略として (u,L)=(a[1],a[2]),(u,R)=(b[1],b[2]) (D,L)=(c[1],c[2]),(D,R)=(d[1],d[2]) このとき (1)戦略(u,L)がナッシュ均衡である (2)a[1]=c[1]のとき純粋戦略ナッシュ均衡が存在する これらがどうして成り立つのか理解できません。

  • ゲーム理論

    戦略型ゲームGの混合戦略ナッシュ均衡をすべて求めよ。   a  b   c A 1,3 3,0 2,-1 B 3,0 2,6 0,2 C 0,4 1,0 3,-1 ※被強支配戦略の繰り返し消去に注意

  • ゲーム理論

    N 人のプレイヤーによる次のようなゲームを考える(N ≥ 2).各プレイヤーにはまず最 初に 1000 円が与えられる.各プレイヤーは,これを保持する(R)か,募金する(C)かを同時 手番で選択する.募金されたお金は合計して 2 倍に増額された後,Rを選んだかCを選んだかに関 わらず,すべてのプレイヤーに均等に山分けされる. 1.一般に N ≥ 3 のとき,ナッシュ均衡になる戦略の組をすべて明らかにしなさい. 2.なぜ 1.で述べた戦略の組はナッシュ均衡になるのか.「支配戦略」という言葉を用いて,直 観的に説明しなさい. 3.このゲームを実際に被験者にプレイさせる実験を行うと,必ずしも1.のようなナッシュ均衡の 戦略がとられないという結果がしばしば観察されるという。実験の結果がナッシュ均衡 に一致しないとすれば,それはなぜだと考えられるか.自分の考えを述べなさい. 以上です。1.は3人以上のプレイヤーのナッシュ均衡の考え方、表記の仕方がわからず苦戦しています。2.は支配戦略=相手がどの戦略できても最適である戦略、という言葉を1.を踏まえた上でどう使えばいいのかわからずにまた苦戦中、3.はおそらくフリーライダーの話でせめていけばいいのかな、と思いながらもどう書けばいいのかわからない状態です。 どうかお力添え頂ければと思います。よろしくお願い致します。

  • 混合戦略ナッシュ均衡について

       D    E A(2,2)  (4,8) B(5,6)  (3,3) という利得表の同時手番ゲームを考える問題についてなのですが、この場合の純粋戦略って(4,8)(5,6)ですよね。 そして混合戦略ナッシュ均衡を含めて考えた時、プレイヤー1と2の最適反応(赤=1、青=2)を図示したのですが以下のようになりました。(プレイヤー1がAを取る確率p、2がDを取る確率q) 下の図で丸を付けた箇所が均衡なのは知っているんですが、この場合答えの表記の仕方はどうなるんでしょうか・・?また、純粋戦略で求めた以外での混合戦略ナッシュ均衡において実現する量プレイヤーの期待利得を求めよ。との問いもあるのですが、だんだんわからなくなってきました・・。お時間のある方どうぞよろしくお願いいたします。

  • ゲーム理論 

    恥ずかしながら追試ということになってしまいそうなので、期末試験問題を復習しようと考えています。 そこで皆様に解説と回答をお教えいただきたく、質問させていただきます。 以下の文章の正誤を応えよ (1)「後出しじゃんけん」のようなゲームはゲームの木で表現すると、手番の時間的推移がわかりやすく理解しやすい。 (2)ゲームの木を使って表現するとき、同じ情報集合に含まれる意思決定節からは必ず同じ数の枝が出ていなければならない。 (3)男女のジレンマゲームは各プレイヤーが支配戦略を一つずつ持っている。 (4)協調の失敗とは、タカハトゲームのように相互に利益をもたらす戦略の組がナッシュ均衡として実現されないことをいう。 (5)すべての情報集合に意思決定節が一つしか含まれていない情報構造のゲームを、完全情報ゲームという。 (6)囚人のジレンマゲームを逐次手番でプレイすれば、ジレンマを解消できる。 (7)ナッシュ均衡はすべてのプレイヤーが単独で戦略を変更するインセンティヴを持たないことを保証するだけであり、複数のプレイヤーが協力して戦略を変更すれば互いに利得を改善できる可能性がある。 (8)ナッシュ均衡の中にプレイヤーのから脅しによって成立すると解釈できるものが含まれるのは、戦略の組み合わせが均衡経路外に対しても最適反応であることが必須だからである。 (9)いわゆる「ペナルティキック」ゲームには純粋戦略のナッシュ均衡は存在しない。 (10)混合戦略のナッシュ均衡において行動Aと行動Bをランダムに選択しているプレイヤーが、どちらか一方の行動だけを選択する純粋戦略に変更しても、そのプレイヤーの期待利得は変わらない。 自分の回答は ○、×、×、○、×、×、○、○、○、× でした。 特に5~10がよくわからないです。解説と回答よろしくお願いします。

  • ゲーム理論

    数学のテキストの中に、ゲーム理論を扱う部分があり、そこに性比ゲームが出てきました。が、どういうゲームの設定なのかが解説されておらず、いきなり式を展開されて、よく理解できません。 一般的に、性比ゲームというのはどのようなルールの下で行われるゲームなのでしょうか?漠然とした質問ですみません。 それと、いくつかの純戦略をある割合で混合した戦略を用いるゲームで「最適反応はいくつかの純戦略を必ず含む」「強意のナッシュ均衡が存在する場合、それは純戦略である」とあったのですが、それは何故ですか?

  • 3×2行列の混合戦略のナッシュ均衡の問題

    1 / 2 戦略1 戦略2 戦略1 4,0 2,5 戦略2 1,2 5,1 戦略3 2,6 3,3 この混合戦略のナッシュ均衡を解くことができません。 1が戦略1・2・3をとる確率をそれぞれp、q、1-p-q、2が戦略1・2をとる確率をs、1-sとおいて、期待利得を導くまではできるのです。 1の期待利得 戦略1:4s+2(1-s)=2s+2 戦略2:s+5(1-s)=-4s+5 戦略3:2s+3(1-s)=-s+3 2の期待利得 戦略1:2q+6(1-p-q)=-6p-4q+6 戦略2:5p+q+3(1-p-q)=2p-2q+3 まず1ですが、期待利得が2種類である2×2行列と違って、期待利得が3種類存在します。 また、2については変数がp・qの2種類あるので、どう処理してよいものかわかりません。 支配戦略が存在しないので、消去して2×2行列にするわけでもなさそうです。 ここから先の解法を教えてください。よろしくお願いします。

  • ゲーム理論 復習

    手詰まりでわかりません。よろしければ教えてください。 企業1と企業2は互いに代替的な製品を生産し販売している。企業xが設定した製品価格をPx万円(x=1、2)としたとき、それぞれの製品に対する需要量は D1=A-P1+P2 D2=A-P2+p1  (Aは正の定数) また各社はそれぞれ生産1あたりにC万円の費用がかかる(A>Cとする)。各社は同時手番でそれぞれの利潤を最大化するように自社製品の価格を設定する。 [1]このゲームを一度だけプレイ (1)企業2の製品価格がP2と予想されるときの企業1の反応関数を求めよ (2)ナッシュ均衡での各社の製品価格として正しいのはどれか。 (3)ナッシュ均衡で各社が獲得する利益はいくらか、 (4)企業1がプライスリーダーとする。企業1が先に戦略を決め、それを見た後で企業2が戦略を決める。そのとき部分ゲーム完全なナッシュ均衡でプレイヤー1が設定する製品価格を求めよ。 (5)(4)のとき企業2の設定する製品価格を求めよ。 [2]上記の手番ゲームが無限回繰り返され、毎回の段階ゲームの結果は次の段階ゲームが始まる前に、各企業に観察されるものとする。各企業は共通の割引因子σ(0<σ<1)を用いて各段階ゲームで割引現在価値を最大にするように戦略を選ぶ。各企業はトリガー戦略(戦略Xと呼ぶ)用いることによって均衡経路上では毎回必ずP=2A+Cという製品価格を実現させようとする。戦略Xでは以下のように指定されている。 ・第一回目の段階ゲームおよび過去に互いに設定し続けて迎えた段階ゲームでは価格をP*に設定する。 ・上記以外の段階ゲームでは(2)で求めた価格を設定する。 今企業2が戦略Xをとると予想したとき、企業1が一回目の段階ゲームで戦略X から逸脱すればP1を(6)に設定することが短期的には最適である。逸脱によって得られる利潤の増加分は(7)である。しかしそれを踏まえ企業2も行動が変化するので、二回目以降の毎回の段階ゲームで企業1の獲得する利潤が、先の逸脱によって、少なくとも(8)万円減る。その結果逸脱によって(9)万円の長期的な損失を発生させる。したがって互いに戦略Xをとり続ける必要十分条件は(10)以上の割引因子をもつことである。 (1)~(10)に答えよ。 という問題です。長いですが、考え方と解答を教えて頂ければと思います。よろしくお願いします。

  • ゲーム理論の混合戦略の求め方

    混合戦略についての質問です。 a b A 3,2 0,0 B 0,2 3,1 C 1,0 1,3 このゲームの混合戦略が分かりません。 解答には「A,B,Cをそれぞれ1/2,1/2,0の確率でとる 」という混合戦略が、純粋戦略Cを強く支配するとあるのですが、なぜこうなるのか分かりません。 どなたか分かる方、教えてください。よろしくお願いします。

借入残高証明書の取得方法
このQ&Aのポイント
  • 借入残高証明書の取得方法について解説します。
  • 借入残高証明書を取得するための手続きについて詳しく説明します。
  • 常陽銀行で借入残高証明書を取得するためにはどのような手続きが必要なのかについて解説します。
回答を見る