ゲーム理論の問題です。至急お願いします。
ゲーム理論の問題です。至急、回答よろしくお願いします。
問1 二人のプレイヤー (1 と 2) が 100 円を分け合う問題を考える. プレイヤー 1 は x 円オファーし, その後プレイヤー 2 は受託 (A) か拒否 (R) のどちらかを選ぶ. x は 0 ≤ x ≤ 100 の実数であるとする. プレイヤー 2 が A を選んだ場合, プレイ ヤー 1 の取り分は x 円, プレイヤー 2 の取り分は 100 - x 円とする. プレイヤー 2 が R を選んだ場合, 交渉は決裂し両者の取り分は 0 円となる.
プレイヤー 1 の取り分を x1 円, プレイヤー 2 の取り分を x2 円とした場合のプレ イヤー 1 の利得は x1, プレイヤー 2 の利得は x2 + β(x2 - x1) で与えられるもの とする (β は正の定数). 部分ゲーム完全均衡における各プレイヤーの利得を求 めなさい. 導出過程も書きなさい.
※ プレイヤー2はAを選んでもRを選んでも利得が同じ場合Aを選ぶとする.
問2 ある財の市場で 3 つの企業 1, 2, 3 が数量競争を行うとする. 各企業の財を一単 位生産するための費用は30であるとする. 企業1がx1, 企業2がx2, 企業3が x3 生産した場合, 市場価格は p = 120 - (x1 + x2 + x3) で与えられるとする. こ の時, 各企業i = 1,2,3の利得は, πi(x1,x2,x3) = [120-(x1 +x2 +x3)]xi -30xi となる. まず, 企業 1 が最初に生産量を選び, 企業 2 と企業 3 は企業 1 の生産量 を知った上で同時に生産量を決定する. 部分ゲーム完全均衡における各企業の 生産量を求めなさい. 導出過程も書きなさい.