• ベストアンサー
  • すぐに回答を!

ゲーム理論

たぶん囚人のジレンマの問題だと思うのですが、先日の情報検定/除法システム試験/システムデザインに出題されました。 マクシミン戦略が最悪の場合の利益は分かるのですが、 添付した、図の見方が分かりません。 ゲーム理論では,複数のプレイヤが存在し,それぞれの行動が影響を及ぼしあう状 況を「ゲーム」ととらえ,そのゲームにおいて,各人の利益にもとづいて相手の行動 を予測し,意思決定を行う。また,実際の戦略においては,相手の行動(将来の状況) を完全に予測することが不可能であり,将来の不確実性を判断する基準にもとづいて, 戦略を決定する。 <設問1> 2人(X氏・Y氏)がそれぞれ2種類の戦略をとる場合の利得が表1のよ うに予想されるとき,次の記述中の (1) に入れるべき適切な字句を解答群から 選べ。 マクシミン戦略において両者の戦略をそれぞれ変えながら各利得を求めてみる。こ こで,表の各欄において,左側の数値がX氏の利得,右側がY氏の利得とする。 X氏の利得は,戦略x1 をとったとき (1) となり,戦略x2 をとったとき (2) となり,両者を比較してより利得の大きい戦略を選択する。同様にY氏の 利得は,戦略y1 をとったとき (3) となり,戦略y2 をとったとき (4) とな り,両者比較してより利得の大きい戦略を選択する。よって, (5) ことになり, (6) となる。 答えは、1:エ 2:イ 3:ウ 4:ア 5:エ  6:イ です。 この手の問題には素人なので、詳しい解説をよろしくお願いします。

共感・応援の気持ちを伝えよう!

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
  • Tacosan
  • ベストアンサー率23% (3656/15482)

ん? 「図の見方が分かりません」って, 問題文に「表の各欄において,左側の数値がX氏の利得,右側がY氏の利得とする」って書いてあるよね. つまり, X が x1 を, Y が y1 をそれぞれ選んだとすると X の利得が 18, Y の利得が -10.

共感・感謝の気持ちを伝えよう!

質問者からのお礼

落ち着いて問題文を読んでなかったようです。 ありがとうございました

関連するQ&A

  • ゲーム理論

    戦略型ゲームGを以下のように定義する。 ・プレイヤーは1と2の2名。 ・プレイヤーi(i=1,2)の戦略集合は0以上1以下の実数の集  合、すなわち、{X|X∈R,0≦X≦1} ・各プレイヤーの利得は以下のように決定される。  プレイヤーi(i=1,2)が戦略Xiを選んだとする。このとき  X1+X2≦1ならば、Xiの値がそのままプレイヤーiの利得とな る。X1+X2>1ならば、両者とも利得は0となる。 このゲームGの純粋戦略ナッシュ均衡をすべて求めよ。 この解き方と解答を教えてください。

  • ゲーム理論の問題です

    利得表を見て解く問題なのですが、 文系脳の自分ではどうしても自力で解ききれる 気がしません。どうかよろしくお願いします。 ・以下の利得表で表されるゲームの解を,厳密に支配される戦略の消去によって導け。 各プレイヤーは,ゲーム の構造(プレイヤー,戦略,利得)を知っていて, お互いが合理的であることをお互いに知っているという,完備情報で共有知識があると いうことを前提に考えよ。 (利得表は手抜きです。申し訳ありません。) (A・B) X   Y   Z    X [3,0][4,1][2,5]    Y [4,3][6,2][3,1]    Z [2,-2][5,0][8,-1]

  • ゲーム理論の問題です

    プレイヤーは1と2の2名です。 ・プレイヤーi(i=1、2)の戦略集合は0以上1以下の実際の集合。すなわち、{x|x∈ R、0≦x≦1} ・各プレイヤーの利得は以下のように決定される: プレイヤーi(i=1、2)が戦略xiを選んだとする。この時x1+x2≦1ならば、xiの値 がそのままプレイヤーiの利得となる。x1+x2>1ならば、両者の利得は0となる。 このゲームの純粋戦略ナッシュ均衡をすべて求めよ。

  • ゲーム理論 

    恥ずかしながら追試ということになってしまいそうなので、期末試験問題を復習しようと考えています。 そこで皆様に解説と回答をお教えいただきたく、質問させていただきます。 以下の文章の正誤を応えよ (1)「後出しじゃんけん」のようなゲームはゲームの木で表現すると、手番の時間的推移がわかりやすく理解しやすい。 (2)ゲームの木を使って表現するとき、同じ情報集合に含まれる意思決定節からは必ず同じ数の枝が出ていなければならない。 (3)男女のジレンマゲームは各プレイヤーが支配戦略を一つずつ持っている。 (4)協調の失敗とは、タカハトゲームのように相互に利益をもたらす戦略の組がナッシュ均衡として実現されないことをいう。 (5)すべての情報集合に意思決定節が一つしか含まれていない情報構造のゲームを、完全情報ゲームという。 (6)囚人のジレンマゲームを逐次手番でプレイすれば、ジレンマを解消できる。 (7)ナッシュ均衡はすべてのプレイヤーが単独で戦略を変更するインセンティヴを持たないことを保証するだけであり、複数のプレイヤーが協力して戦略を変更すれば互いに利得を改善できる可能性がある。 (8)ナッシュ均衡の中にプレイヤーのから脅しによって成立すると解釈できるものが含まれるのは、戦略の組み合わせが均衡経路外に対しても最適反応であることが必須だからである。 (9)いわゆる「ペナルティキック」ゲームには純粋戦略のナッシュ均衡は存在しない。 (10)混合戦略のナッシュ均衡において行動Aと行動Bをランダムに選択しているプレイヤーが、どちらか一方の行動だけを選択する純粋戦略に変更しても、そのプレイヤーの期待利得は変わらない。 自分の回答は ○、×、×、○、×、×、○、○、○、× でした。 特に5~10がよくわからないです。解説と回答よろしくお願いします。

  • ジャンケンのゲーム

    ゲーム理論、逐次手番ゲームです。 後だしが許されたジャンケンの利得表を書けという問題です。 s1={ぐ、ち、ぱ}のとき後だしする戦略はs2={X.Y.Z}とします。X.Y.Zはそれぞれぐ、ち、ぱに対応する戦略です。つまりs1=ぐ⇨s2=X(ぐ、ち、ぱのいずれかを代入)ということです。 このゲームのマトリクスの表現の仕方がわかりません… 自分で考えたいので、できれば答えを示して頂くより、アプローチの仕方、考え方を示して頂ければ、と思います。よろしくお願い申し上げます。

  • ゲーム理論を教えて下さい!

    ゲーム理論を勉強しているのですが、難しい問題にぶつかってしまいました。 どなたか、ご教授お願い致します。 解答だけでも非常に助かるのですが、そこまでの流れもご説明頂けると非常に嬉しいです。 よろしくお願い致します。 ------------------ プレーヤーAとプレーヤーBの間で、大きさ1のパイをどのように分割するかということをめぐって、以下の交渉を行う。まず、AがAのシェアをX1(0=<X1=<1)について提案する。(A,B両者のシェアをそれぞれX1, 1-X1とする。次にBがこの提案を受諾するか、拒否するかを選択する。もし受諾すればゲームは終了し、提案通りにAはX1を、Bは1-X1を得る。拒否すれば、今度はBがAのシェアX2((0=<X2=<1)について提案を行う。 最後に、Aがこの提案を受諾するか拒否するかを選択する。もし、受諾すればゲームは終了するが、この場合に、交渉の成立に時間を要したことになるので、時間を要することなく交渉が成立した場合と比べて、一定の大きさのシェアの価値は低下すると考えよう。具体的には、AはiX2を、Bはi(1-X2)を得ると決定する(0<i<1)。受諾せずに拒否すれば、両者は交渉によるパイの分割に失敗することになるので、各プレーヤーの利得は0になる。 このゲームを展開系で表現した上で部分ゲーム完全均衡を特定し、その際の各プレーヤーの利得を求めよ。 ------------------------------

  • ゲーム理論の勉強をしているのですが

    ゲーム理論の勉強をしているのですが、この問題が全くわかりません。 どなたか、ご教授お願い致しします。 解答だけでも非常に助かるのですが、簡単にでも流れをご説明頂けるとさらに勉強になります。 ------------------------ 国家S1とS2の2つが大きさ100のパイの配分を巡って対峙している。現状では、それぞれのシェアは50ずつである。 S1の手番からゲームは始まる。まず、S1はS2のシェアの半分を要求するかしないかを選択する(行動の選択肢は要求する/要求しない)。要求しなければ、ゲームは終わり、両国の利得は(50,50)となる。(ただし、カッコ内はコンマの前がS1の利得、後がS2の利得)。これに対して、要求すればS2にて版が回る。ここでS2はその要求に対して抵抗するかしないかを決定する(行動の選択肢は抵抗する/抵抗しない)。S2が抵抗するを選択すると、両国の利得は破壊を伴う戦争が生じて(20,20)となる。 S2が抵抗しないを選択するとゲームは終わらず、再びS1に手番が回るとする。ここでS1はS2の残りのシェアを要求するかしないかを選択する。要求しなければゲームは終わり、両国の利得は(75,25)となる。これに対して要求すればS2に手番が回る。ここでS2はその要求に対して対抗するかしないかを決定する。S2がいずれを選択するにせよゲームは終わり、両国の利得は、抵抗すれば破壊を伴う戦争が生じて(80,-40)、抵抗しなければ(100,0)となる。このゲームの部分ゲーム完全均衡を特定せよ。 --------------------------- よろしくお願い致します。

  • ゲーム理論のトリガー戦略について

    ぜひ教えてください。次の問題がわからなくて困っています。 ゲーム理論のトリガー戦略についての問題なのですが、 次の利得表において、              B         協調     裏切り    (左:Aの利得、右、Bの利得)   協調  (20、20) (0、30) A 裏切り (30、0)  (10、10) 1回目は必ず協調、それ以降、(t-1)回目に相手が裏切れば、t回目以降は両方とも裏切るという無限回繰り返しゲームにおいて、(どちらも協調)が成立する割引因子aを求めよ。  という問題なのですが、答えは、0.5になるのだそうですが、導出過程がわかりません。どなたか教えていただけませんでしょうか。よろしくお願いします。

  • ナッシュ均衡について

    戦略型ゲームG1を以下のように定義する。 ・プレイヤーは1と2の二名 ・プレイヤーi(i=1、2)の戦略集合は0以上1以下の実際の集合。すなわち、{x|x∈R、0≦x≦1} ・各プレイヤーの利得は以下のように決定される: プレイヤーi(i=1、2)が戦略xiを選んだとする。この時x1+x2≦1ならば、xiの値 がそのままプレイヤーiの利得となる。x1+x2>1ならば、両者の利得は0となる。 このゲームの純粋戦略ナッシュ均衡をすべて求めよ。 下の戦略型ゲームG2の混合戦略ナッシュ均衡をすべて求めよ。(被強支配戦略の繰り返し削除に注意)    a b c A(1,3) (3,0) (2,-1) B(3,0) (2,6) (0,2) C(0,4) (1,0) (3,-1) この二つの問題がまったくわかりません。解き方と答えがもしわかる方いましたら教えてください。 お願いします。  

  • 中3数学の問題

    よく分かりません教えてください。 ある斜面でボールを転がしたとき、転がり始めてからX秒間に転がる距離を YmとしてXとYの関係を調べたら、Y=4X² となりました。表のア~エにあてはまる数を書きなさい 表   X   0    1     2     3  X²   0    1    イ     ウ  Y   0    ア    16    エ 答えはア=4 イ=4 ウ=9 エ=36です なぜそうなのかと、答えのだしかたを教えてください、回答お願いします。