• 締切済み
  • すぐに回答を!

ゲーム理論のトリガー戦略について

ぜひ教えてください。次の問題がわからなくて困っています。 ゲーム理論のトリガー戦略についての問題なのですが、 次の利得表において、              B         協調     裏切り    (左:Aの利得、右、Bの利得)   協調  (20、20) (0、30) A 裏切り (30、0)  (10、10) 1回目は必ず協調、それ以降、(t-1)回目に相手が裏切れば、t回目以降は両方とも裏切るという無限回繰り返しゲームにおいて、(どちらも協調)が成立する割引因子aを求めよ。  という問題なのですが、答えは、0.5になるのだそうですが、導出過程がわかりません。どなたか教えていただけませんでしょうか。よろしくお願いします。

共感・応援の気持ちを伝えよう!

みんなの回答

  • 回答No.1

クールノー・ナッシュ均衡は(協調,協調)であることは理解しているでしょうか? ここで求める割引因子とは協調しているほうが両者にとってより大きな利得が得ら れる割引率のことです。 Aの行動を考えて見ます。 1回目は『協調』,2回目に『裏切り』とすると,2回目のBの行動はまだ『協調』 です。3回目からBも『裏切り』を選んでくるので,このときの利得は, 20a+30*(a^2)+10*(a^3)+10*(a^4)+.....=P となります。 次に,AもBもずっと『協調』していたときの利得は, 20a+20*(a^2)+20*(a^3)+20*(a^4)+.....=Q Q>Pであればよいのですから,これを等比数列の和の公式で計算すると, a>1/2 となります。このとき両者は無差別になります。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • ゲーム理論のトリガー戦略について質問です。

    問題 1\2     A          B A       (5, 5)        (1, 7) B       (7, 1)        (4, 4) 上の基本ゲームを無限に繰り返す。2による戦略「Bから始めるトリガー」に対して、すべての部分ゲームで最適反応となる1の戦略はどのようなものか。また、その時の利得の系列はどうなるか。 どなたか教えてください、お願いしますm(__)m

  • ゲーム理論? 全く分からず困っています

    いつもお世話になっております. この度は次の問題について質問させていただきます. 問 企業1と企業2は協調することで共同利潤を極大化し,それを半々にシェアしている.2つの企業は互いに裏切らないように引き金戦略を予告し,牽制し合っている.お互い共同利潤を極大化している場合に各々の利潤はπ/2であるとする.この時以下の問いに答えなさい. (1)割引因子をδ(0<δ<1)として,両者が無期限に協調した場合の各々の利潤を求めなさい. (2)企業2はt-1期までは企業1と協調するけれども,t期に裏切ることにより,利潤πを全て獲得しようと考えている.ただし,企業2はいったん自分が裏切ると,その語は企業1が報復として引き金戦略をとることにより,競争の結果利潤がゼロとなることを知っている.このとき,企業2が無期限に協調するか,あるいはt-1期まで協調した後にt期に裏切るか,両者が無差別となる割引因子を求めなさい. このような問題です.いろいろな図書を調べながら,ずっと考えているのですが(1)(2)ともに全く糸口が見つかりません.そもそもδをどう取り扱っていいのかすらわかりません.お分かりの方がいらっしゃいましたら,ヒントをいただけないでしょうか.何卒よろしくお願いいたします.

  • 無限繰り返しゲームについて教えてください

     両者がとりうる戦略はこの2つ。   企業b   高価格     低価格 企 (15.15) (0.0) 業  A (30.0)  (5.5)  このゲームが無限に繰り返される状況を考える。割引因子δ(0<δ<1)とし、各企業はトリガー戦略をとることと仮定する。トリガー戦略がこの繰り返しゲームのナッシュ均衡となるための、割引因子δの範囲を求めよ。という問題なのですが、教科書やパソコンで調べても全く分かりません。よかったらどなたか教えてください。おねがいします。

  • ゲーム理論の問題です

    利得表を見て解く問題なのですが、 文系脳の自分ではどうしても自力で解ききれる 気がしません。どうかよろしくお願いします。 ・以下の利得表で表されるゲームの解を,厳密に支配される戦略の消去によって導け。 各プレイヤーは,ゲーム の構造(プレイヤー,戦略,利得)を知っていて, お互いが合理的であることをお互いに知っているという,完備情報で共有知識があると いうことを前提に考えよ。 (利得表は手抜きです。申し訳ありません。) (A・B) X   Y   Z    X [3,0][4,1][2,5]    Y [4,3][6,2][3,1]    Z [2,-2][5,0][8,-1]

  • ゲーム理論

    たぶん囚人のジレンマの問題だと思うのですが、先日の情報検定/除法システム試験/システムデザインに出題されました。 マクシミン戦略が最悪の場合の利益は分かるのですが、 添付した、図の見方が分かりません。 ゲーム理論では,複数のプレイヤが存在し,それぞれの行動が影響を及ぼしあう状 況を「ゲーム」ととらえ,そのゲームにおいて,各人の利益にもとづいて相手の行動 を予測し,意思決定を行う。また,実際の戦略においては,相手の行動(将来の状況) を完全に予測することが不可能であり,将来の不確実性を判断する基準にもとづいて, 戦略を決定する。 <設問1> 2人(X氏・Y氏)がそれぞれ2種類の戦略をとる場合の利得が表1のよ うに予想されるとき,次の記述中の (1) に入れるべき適切な字句を解答群から 選べ。 マクシミン戦略において両者の戦略をそれぞれ変えながら各利得を求めてみる。こ こで,表の各欄において,左側の数値がX氏の利得,右側がY氏の利得とする。 X氏の利得は,戦略x1 をとったとき (1) となり,戦略x2 をとったとき (2) となり,両者を比較してより利得の大きい戦略を選択する。同様にY氏の 利得は,戦略y1 をとったとき (3) となり,戦略y2 をとったとき (4) とな り,両者比較してより利得の大きい戦略を選択する。よって, (5) ことになり, (6) となる。 答えは、1:エ 2:イ 3:ウ 4:ア 5:エ  6:イ です。 この手の問題には素人なので、詳しい解説をよろしくお願いします。

  • ゲーム理論の混合戦略の求め方

    混合戦略についての質問です。 a b A 3,2 0,0 B 0,2 3,1 C 1,0 1,3 このゲームの混合戦略が分かりません。 解答には「A,B,Cをそれぞれ1/2,1/2,0の確率でとる 」という混合戦略が、純粋戦略Cを強く支配するとあるのですが、なぜこうなるのか分かりません。 どなたか分かる方、教えてください。よろしくお願いします。

  • ゲーム理論 

    恥ずかしながら追試ということになってしまいそうなので、期末試験問題を復習しようと考えています。 そこで皆様に解説と回答をお教えいただきたく、質問させていただきます。 以下の文章の正誤を応えよ (1)「後出しじゃんけん」のようなゲームはゲームの木で表現すると、手番の時間的推移がわかりやすく理解しやすい。 (2)ゲームの木を使って表現するとき、同じ情報集合に含まれる意思決定節からは必ず同じ数の枝が出ていなければならない。 (3)男女のジレンマゲームは各プレイヤーが支配戦略を一つずつ持っている。 (4)協調の失敗とは、タカハトゲームのように相互に利益をもたらす戦略の組がナッシュ均衡として実現されないことをいう。 (5)すべての情報集合に意思決定節が一つしか含まれていない情報構造のゲームを、完全情報ゲームという。 (6)囚人のジレンマゲームを逐次手番でプレイすれば、ジレンマを解消できる。 (7)ナッシュ均衡はすべてのプレイヤーが単独で戦略を変更するインセンティヴを持たないことを保証するだけであり、複数のプレイヤーが協力して戦略を変更すれば互いに利得を改善できる可能性がある。 (8)ナッシュ均衡の中にプレイヤーのから脅しによって成立すると解釈できるものが含まれるのは、戦略の組み合わせが均衡経路外に対しても最適反応であることが必須だからである。 (9)いわゆる「ペナルティキック」ゲームには純粋戦略のナッシュ均衡は存在しない。 (10)混合戦略のナッシュ均衡において行動Aと行動Bをランダムに選択しているプレイヤーが、どちらか一方の行動だけを選択する純粋戦略に変更しても、そのプレイヤーの期待利得は変わらない。 自分の回答は ○、×、×、○、×、×、○、○、○、× でした。 特に5~10がよくわからないです。解説と回答よろしくお願いします。

  • 数学と戦略

    戦略に関する質問です。 次のような戦略ゲームを考えます。 1、2という人物がいて、1については戦略u,D,2については戦略L,R を取ると考えて 以下戦略のとり方によって利得は次のようになります 左から1、2の取る戦略として (u,L)=(a[1],a[2]),(u,R)=(b[1],b[2]) (D,L)=(c[1],c[2]),(D,R)=(d[1],d[2]) このとき (1)戦略(u,L)がナッシュ均衡である (2)a[1]=c[1]のとき純粋戦略ナッシュ均衡が存在する これらがどうして成り立つのか理解できません。

  • ゲーム理論 復習

    手詰まりでわかりません。よろしければ教えてください。 企業1と企業2は互いに代替的な製品を生産し販売している。企業xが設定した製品価格をPx万円(x=1、2)としたとき、それぞれの製品に対する需要量は D1=A-P1+P2 D2=A-P2+p1  (Aは正の定数) また各社はそれぞれ生産1あたりにC万円の費用がかかる(A>Cとする)。各社は同時手番でそれぞれの利潤を最大化するように自社製品の価格を設定する。 [1]このゲームを一度だけプレイ (1)企業2の製品価格がP2と予想されるときの企業1の反応関数を求めよ (2)ナッシュ均衡での各社の製品価格として正しいのはどれか。 (3)ナッシュ均衡で各社が獲得する利益はいくらか、 (4)企業1がプライスリーダーとする。企業1が先に戦略を決め、それを見た後で企業2が戦略を決める。そのとき部分ゲーム完全なナッシュ均衡でプレイヤー1が設定する製品価格を求めよ。 (5)(4)のとき企業2の設定する製品価格を求めよ。 [2]上記の手番ゲームが無限回繰り返され、毎回の段階ゲームの結果は次の段階ゲームが始まる前に、各企業に観察されるものとする。各企業は共通の割引因子σ(0<σ<1)を用いて各段階ゲームで割引現在価値を最大にするように戦略を選ぶ。各企業はトリガー戦略(戦略Xと呼ぶ)用いることによって均衡経路上では毎回必ずP=2A+Cという製品価格を実現させようとする。戦略Xでは以下のように指定されている。 ・第一回目の段階ゲームおよび過去に互いに設定し続けて迎えた段階ゲームでは価格をP*に設定する。 ・上記以外の段階ゲームでは(2)で求めた価格を設定する。 今企業2が戦略Xをとると予想したとき、企業1が一回目の段階ゲームで戦略X から逸脱すればP1を(6)に設定することが短期的には最適である。逸脱によって得られる利潤の増加分は(7)である。しかしそれを踏まえ企業2も行動が変化するので、二回目以降の毎回の段階ゲームで企業1の獲得する利潤が、先の逸脱によって、少なくとも(8)万円減る。その結果逸脱によって(9)万円の長期的な損失を発生させる。したがって互いに戦略Xをとり続ける必要十分条件は(10)以上の割引因子をもつことである。 (1)~(10)に答えよ。 という問題です。長いですが、考え方と解答を教えて頂ければと思います。よろしくお願いします。

  • ゲーム理論(混合戦略)について

    ゲーム理論(混合戦略)についての質問です。 A_B--(グー)-(チョキ)-(パー)--- (グー) (0,0)(1,-1)(-5,5) (チョキ) (-1,1)(0,0)(2,-2) (パー) (5,-5)(-2,2)(0,0) 次の確率でじゃんけんとする。 プレーヤーA グー:a チョキ:b プレーヤーB グー:X チョキ:Y 上記の場合、 プレーヤーAのベストミックスは(a;1/4 b;5/8 c;1/8) プレーヤーBのベストミックスは(a;1/4 b;5/8 c;1/8) で正しいでしょうか?