• ベストアンサー
  • すぐに回答を!

ゲーム理論(混合戦略)について

ゲーム理論(混合戦略)についての質問です。 A_B--(グー)-(チョキ)-(パー)--- (グー) (0,0)(1,-1)(-5,5) (チョキ) (-1,1)(0,0)(2,-2) (パー) (5,-5)(-2,2)(0,0) 次の確率でじゃんけんとする。 プレーヤーA グー:a チョキ:b プレーヤーB グー:X チョキ:Y 上記の場合、 プレーヤーAのベストミックスは(a;1/4 b;5/8 c;1/8) プレーヤーBのベストミックスは(a;1/4 b;5/8 c;1/8) で正しいでしょうか?

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数135
  • ありがとう数3

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
  • f272
  • ベストアンサー率45% (5182/11473)

それで正しいよ。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとうございます!

関連するQ&A

  • ゲーム理論の混合戦略の求め方

    混合戦略についての質問です。 a b A 3,2 0,0 B 0,2 3,1 C 1,0 1,3 このゲームの混合戦略が分かりません。 解答には「A,B,Cをそれぞれ1/2,1/2,0の確率でとる 」という混合戦略が、純粋戦略Cを強く支配するとあるのですが、なぜこうなるのか分かりません。 どなたか分かる方、教えてください。よろしくお願いします。

  • pの出す手の確率→グー:チョキ:パー=1/2:1/

    pの出す手の確率→グー:チョキ:パー=1/2:1/4:1/3qの出す手の確率→グー:チョキ:パー=1/4:1/3:1/4 (1)2回じゃんけんしてqがグーで勝つ確率 (2)4回じゃんけんしてpがパーかチョキで勝つ確率 教えてくださいm(_ _)m

  • ゲーム理論

    混合戦略の範囲でのナッシュ均衡 けんとたけしという2人がいます。 けんとたけしは共に混合戦略をとり、けんが純粋戦略uをとる確率p(0≦p≦1) たけしがとる純粋戦略Lをとる確率q(0≦q≦1) 以上の条件があって けんとたけしがとる戦略によってとる利得は次のようになる。 けん;(u,L)=(a,b) (u,R)=(0,0) たけし;(D,L)=(0,0) (D,R)=(c,d) ただしa,b,c,dは正の定数 このとき 混合戦略の範囲でナッシュ均衡はありますか?

  • 確率の問題がわかりません。

    A,B,Cの三人で次のようなじゃんけん競技を行う。 ・皆グー,チョキ,パーを任意に出すが,グーはチョキに勝ち,パーはグーに勝つ。 ・全員が同じものを出せばアイコ(勝負がつかない)。また,グー,チョキ,パーが出揃ってもアイコ。 ・まけた人はその場ではずれ,残った人でじゃんけんを行う。 ・じゃんけんは何回でもできるものとし,勝ち残った者が一人になれば,その人が優勝となる。 (1)最初のじゃんけんでアイコになる確率は? (2)Aが二回目で優勝する確率は? (3)Aが三回目で優勝する確率は? (4)Aがn回目で優勝する確率をPnとすると、Pnは? (5) (4)より、Aが優勝する確率Σ(∞)(n=1)Pnは? ただし,0<a<1のとき,lim(n→∞)na^n=0である。 わかる方、全問でなくてもいいので、解き方を詳しく教えていただけたら幸いです。お願い致します。

  • 混合戦略のナッシュ均衡について

    次のような問題です。 プレイヤー1は確率pでUを、確率1-pでDを選択する。 同様に、プレイヤー2は確率qでLを、確率1-qでRを選択する。 (プレイヤー1の利得、プレイヤー2の利得)は UかつL→(1,1) UかつR→(1,0) DかつL→(0,1) DかつR→(-1,-1)である。 このとき、混合戦略でのナッシュ均衡(p*,q*)を求めよ。 プレイヤー1の反応関数を求めるとR1(q)=(2-p)q+1-pとなって、最適なp*が1を超えてしまい、詰まってしまいました。 どのように解けばいいのでしょうか…回答よろしくお願いします。

  • 確率の問題

    よろしくお願いします 確率の問題です。 じゃんけんにおいて、グー、チョキ、パーをそれぞれ1/3の確率でだすとして次の問いに答えよ。 3人がじゃんけんをして順位を決定する。ちょうどn回目のじゃんけんが終わった時点で3人の順位が確定する確率を求めよ。

  • 展開型ゲームにおける混合戦略

    展開型ゲームにも混合戦略均衡ってあるんですか?完全・完備情報は仮定されてます。例えばプレイヤーが2人いて始めのプレイヤーはどうやっても行動が観測されてしまうから彼に混合戦略はないですよね?でも後に動くほうは混合戦略を持つことによって前者の行動を規定できるとも思うのですが、考え方・計算の仕方共にはっきりとしません。各自2つの戦略を持っているとして、ノーマルフォームに置き換えると8通りの戦略の組み合わせができるのですが、後者の4つの戦略に確率を振り分けるとpと1-pのように簡単には行きません。考え方をご教示くださいませ。

  • 10回じゃんけんの確率計算

    モバゲーにて、10回じゃんけんを同時にして合計6勝以上したら、景品がもらえるという遊びがはやっています。 そこで6勝以上する確率の計算法もしくは、6勝以上する確立を教えていただけないでしょうか? 相手「グー」「チョキ」「グー」「チョキ」「グー」「チョキ」「グー」「チョキ」「グー」「チョキ」 自分「チョキ」「グー」「チョキ」「グー」「チョキ」「グー」「チョキ」「グー」「パー」「グー」 このように10回じゃんけんを一度に出し、合計の勝利数で決まります。二人同時に手をだします。 この例だと、自分が6勝です。 あいこは、勝ちには入りませんので、負けと同じ扱いです。 説明不十分かと思いますので、対戦例を2点かきます。 相手「グー」「チョキ」「グー」「チョキ」「グー」「チョキ」「グー」「チョキ」「グー」「チョキ」 自分「グー」「チョキ」「チョキ」「グー」「チョキ」「グー」「チョキ」「グー」「パー」「グー」 ↑これは、自分が、5勝です。 相手「グー」「グー」「グー」「グー」「グー」「グー」「グー」「グー」「グー」「グー」 自分「パー」「パー」「パー」「パー」「パー」「パー」「パー」「パー」「パー」「パー」 ↑これは自分が10勝です。 じゃんけんの手は、二人とも、同時に10手だします。6連勝じゃなく、負けても、何度目で勝ってもいいので、6回以上かてた時の確率を知りたいです。

  • 混合戦略ナッシュ均衡について

       D    E A(2,2)  (4,8) B(5,6)  (3,3) という利得表の同時手番ゲームを考える問題についてなのですが、この場合の純粋戦略って(4,8)(5,6)ですよね。 そして混合戦略ナッシュ均衡を含めて考えた時、プレイヤー1と2の最適反応(赤=1、青=2)を図示したのですが以下のようになりました。(プレイヤー1がAを取る確率p、2がDを取る確率q) 下の図で丸を付けた箇所が均衡なのは知っているんですが、この場合答えの表記の仕方はどうなるんでしょうか・・?また、純粋戦略で求めた以外での混合戦略ナッシュ均衡において実現する量プレイヤーの期待利得を求めよ。との問いもあるのですが、だんだんわからなくなってきました・・。お時間のある方どうぞよろしくお願いいたします。

  • ゲーム理論

    数学のテキストの中に、ゲーム理論を扱う部分があり、そこに性比ゲームが出てきました。が、どういうゲームの設定なのかが解説されておらず、いきなり式を展開されて、よく理解できません。 一般的に、性比ゲームというのはどのようなルールの下で行われるゲームなのでしょうか?漠然とした質問ですみません。 それと、いくつかの純戦略をある割合で混合した戦略を用いるゲームで「最適反応はいくつかの純戦略を必ず含む」「強意のナッシュ均衡が存在する場合、それは純戦略である」とあったのですが、それは何故ですか?