• 締切済み
  • すぐに回答を!

情報経済学、ミクロ経済学の問題について2

ミクロ経済、 情報経済論について質問です。 1.画像の利得表のとき プレイヤー1が戦略A、プレイヤー2が戦略Cをとるときの(4,2)の意味を説明せよ 2.ナッシュ均衡の定義を述べ、上の利得表のナッシュ均衡を求めよ。 3.この利得表を例に支配戦略について説明せよ。 4.最適反応戦略とは何かを説明せよ。 ノートや本を見ても 難しくて解けませんでした。 どうか答えを よろしくお願いいたします。

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数100
  • ありがとう数0

みんなの回答

  • 回答No.2

こんなゲーム理論の基本的な問題が難しい?答えを書くのは易しいことですが、あなたの問題を解決することになりません! もう一度、教科書を復習して、どこのところがわからないのか、提出し直してください!

共感・感謝の気持ちを伝えよう!

質問者からの補足

すみません、急ぎなんで!! 復習は後できちんとしますので 答えをお願いします。

関連するQ&A

  • ミクロ経済学

    経済学の問題です。 よろしければご教授ください。 二人のプレイヤーA,Bによる同時手番ゲームを考える。二人の戦略空間は等しく、Si=[0,a],(i=A,B)で与えられる。プレイヤーiが戦略(sA,sB)から得られる利得を ui(sA,sB)={a-sj if si>sj ={1/2a-1/2sj if si=sj ={0 if si<sj とする。ここでaは正の実数とする。 以下の問いに答えなさい。 1) (a/2,a/2)はナッシュ均衡か否かを理由とともに説明しなさい。 2) (a,a)はナッシュ均衡か否かを理由とともに説明しなさい。 3)支配戦略均衡は存在するかどうか答えなさい。存在する場合は支配戦略均衡を全て求めなさい。また存在しない場合は理由を説明しなさい。 ○利得の数式の意味から分かりません。

  • ナッシュ均衡について

    戦略型ゲームG1を以下のように定義する。 ・プレイヤーは1と2の二名 ・プレイヤーi(i=1、2)の戦略集合は0以上1以下の実際の集合。すなわち、{x|x∈R、0≦x≦1} ・各プレイヤーの利得は以下のように決定される: プレイヤーi(i=1、2)が戦略xiを選んだとする。この時x1+x2≦1ならば、xiの値 がそのままプレイヤーiの利得となる。x1+x2>1ならば、両者の利得は0となる。 このゲームの純粋戦略ナッシュ均衡をすべて求めよ。 下の戦略型ゲームG2の混合戦略ナッシュ均衡をすべて求めよ。(被強支配戦略の繰り返し削除に注意)    a b c A(1,3) (3,0) (2,-1) B(3,0) (2,6) (0,2) C(0,4) (1,0) (3,-1) この二つの問題がまったくわかりません。解き方と答えがもしわかる方いましたら教えてください。 お願いします。  

  • 混合戦略ナッシュ均衡について

       D    E A(2,2)  (4,8) B(5,6)  (3,3) という利得表の同時手番ゲームを考える問題についてなのですが、この場合の純粋戦略って(4,8)(5,6)ですよね。 そして混合戦略ナッシュ均衡を含めて考えた時、プレイヤー1と2の最適反応(赤=1、青=2)を図示したのですが以下のようになりました。(プレイヤー1がAを取る確率p、2がDを取る確率q) 下の図で丸を付けた箇所が均衡なのは知っているんですが、この場合答えの表記の仕方はどうなるんでしょうか・・?また、純粋戦略で求めた以外での混合戦略ナッシュ均衡において実現する量プレイヤーの期待利得を求めよ。との問いもあるのですが、だんだんわからなくなってきました・・。お時間のある方どうぞよろしくお願いいたします。

  • 回答No.1

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • ゲーム理論

    戦略型ゲームGを以下のように定義する。 ・プレイヤーは1と2の2名。 ・プレイヤーi(i=1,2)の戦略集合は0以上1以下の実数の集  合、すなわち、{X|X∈R,0≦X≦1} ・各プレイヤーの利得は以下のように決定される。  プレイヤーi(i=1,2)が戦略Xiを選んだとする。このとき  X1+X2≦1ならば、Xiの値がそのままプレイヤーiの利得とな る。X1+X2>1ならば、両者とも利得は0となる。 このゲームGの純粋戦略ナッシュ均衡をすべて求めよ。 この解き方と解答を教えてください。

  • 純粋戦略ナッシュ均衡について

      D    E    F A(4,4) (0、0) (7,0) B(0,0) (1,1) (0,0) C(0,7) (0,0) (6,6) (プレイヤー1の利得、プレイヤー2の利得) A,B,Cはプレイヤー1の選択、 D,E,Fはプレイヤー2の選択であり、 プレイヤー1と2が同時に独立に選択する場合の、純粋戦略ナッシュ均衡はどうなるのでしょうか? 何冊かテキストのゲーム理論の部分を読んでみましたが、いまいち純粋戦略ナッシュ均衡とはなんなのか理解できないので、どなたか教えていただけると助かります。 問題には、純粋戦略ナッシュ均衡を全て挙げよと書いてあるのですが、ナッシュ均衡は、相手の選択を所与のものとした場合に、他の選択肢を選んでも、利得が増えることのない選択のことですよね? 一つのゲームにいくつもあるものなのでしょうか? 素人な質問ですみませんが、よろしくおねがいいたします。

  • ゲーム理論 

    恥ずかしながら追試ということになってしまいそうなので、期末試験問題を復習しようと考えています。 そこで皆様に解説と回答をお教えいただきたく、質問させていただきます。 以下の文章の正誤を応えよ (1)「後出しじゃんけん」のようなゲームはゲームの木で表現すると、手番の時間的推移がわかりやすく理解しやすい。 (2)ゲームの木を使って表現するとき、同じ情報集合に含まれる意思決定節からは必ず同じ数の枝が出ていなければならない。 (3)男女のジレンマゲームは各プレイヤーが支配戦略を一つずつ持っている。 (4)協調の失敗とは、タカハトゲームのように相互に利益をもたらす戦略の組がナッシュ均衡として実現されないことをいう。 (5)すべての情報集合に意思決定節が一つしか含まれていない情報構造のゲームを、完全情報ゲームという。 (6)囚人のジレンマゲームを逐次手番でプレイすれば、ジレンマを解消できる。 (7)ナッシュ均衡はすべてのプレイヤーが単独で戦略を変更するインセンティヴを持たないことを保証するだけであり、複数のプレイヤーが協力して戦略を変更すれば互いに利得を改善できる可能性がある。 (8)ナッシュ均衡の中にプレイヤーのから脅しによって成立すると解釈できるものが含まれるのは、戦略の組み合わせが均衡経路外に対しても最適反応であることが必須だからである。 (9)いわゆる「ペナルティキック」ゲームには純粋戦略のナッシュ均衡は存在しない。 (10)混合戦略のナッシュ均衡において行動Aと行動Bをランダムに選択しているプレイヤーが、どちらか一方の行動だけを選択する純粋戦略に変更しても、そのプレイヤーの期待利得は変わらない。 自分の回答は ○、×、×、○、×、×、○、○、○、× でした。 特に5~10がよくわからないです。解説と回答よろしくお願いします。

  • テストのミクロがわからなくて困っています。助けてください。

    個人A,Bがそれぞれ2種類の戦略を持つゲームの利得行列が    B,1   B,11 A,1 (3,3) (0,4) A,11(4,0)(1,1) この小()は大()で、一まとまりになっていなす。 で与えられている。但し、(a,b)は、個人Aの利得がaで個人Bの利得がbであることを意味する。 (1)戦略11は個人A,Bの支配戦略であることを示せ。 (2)このゲームのナッシュ均衡をすべて求めよ。 (3)このゲームは囚人のジレンマと呼ばれる状況になっていることを説明せよ。 この問題を、どうか教えてください。お願いします。

  • 混合戦略のナッシュ均衡について

    次のような問題です。 プレイヤー1は確率pでUを、確率1-pでDを選択する。 同様に、プレイヤー2は確率qでLを、確率1-qでRを選択する。 (プレイヤー1の利得、プレイヤー2の利得)は UかつL→(1,1) UかつR→(1,0) DかつL→(0,1) DかつR→(-1,-1)である。 このとき、混合戦略でのナッシュ均衡(p*,q*)を求めよ。 プレイヤー1の反応関数を求めるとR1(q)=(2-p)q+1-pとなって、最適なp*が1を超えてしまい、詰まってしまいました。 どのように解けばいいのでしょうか…回答よろしくお願いします。

  • ゲーム理論の問題です

    プレイヤーは1と2の2名です。 ・プレイヤーi(i=1、2)の戦略集合は0以上1以下の実際の集合。すなわち、{x|x∈ R、0≦x≦1} ・各プレイヤーの利得は以下のように決定される: プレイヤーi(i=1、2)が戦略xiを選んだとする。この時x1+x2≦1ならば、xiの値 がそのままプレイヤーiの利得となる。x1+x2>1ならば、両者の利得は0となる。 このゲームの純粋戦略ナッシュ均衡をすべて求めよ。

  • ゲーム理論

    N 人のプレイヤーによる次のようなゲームを考える(N ≥ 2).各プレイヤーにはまず最 初に 1000 円が与えられる.各プレイヤーは,これを保持する(R)か,募金する(C)かを同時 手番で選択する.募金されたお金は合計して 2 倍に増額された後,Rを選んだかCを選んだかに関 わらず,すべてのプレイヤーに均等に山分けされる. 1.一般に N ≥ 3 のとき,ナッシュ均衡になる戦略の組をすべて明らかにしなさい. 2.なぜ 1.で述べた戦略の組はナッシュ均衡になるのか.「支配戦略」という言葉を用いて,直 観的に説明しなさい. 3.このゲームを実際に被験者にプレイさせる実験を行うと,必ずしも1.のようなナッシュ均衡の 戦略がとられないという結果がしばしば観察されるという。実験の結果がナッシュ均衡 に一致しないとすれば,それはなぜだと考えられるか.自分の考えを述べなさい. 以上です。1.は3人以上のプレイヤーのナッシュ均衡の考え方、表記の仕方がわからず苦戦しています。2.は支配戦略=相手がどの戦略できても最適である戦略、という言葉を1.を踏まえた上でどう使えばいいのかわからずにまた苦戦中、3.はおそらくフリーライダーの話でせめていけばいいのかな、と思いながらもどう書けばいいのかわからない状態です。 どうかお力添え頂ければと思います。よろしくお願い致します。

  • ゲーム理論のトリガー戦略について質問です。

    問題 1\2     A          B A       (5, 5)        (1, 7) B       (7, 1)        (4, 4) 上の基本ゲームを無限に繰り返す。2による戦略「Bから始めるトリガー」に対して、すべての部分ゲームで最適反応となる1の戦略はどのようなものか。また、その時の利得の系列はどうなるか。 どなたか教えてください、お願いしますm(__)m

  • 3×2行列の混合戦略のナッシュ均衡の問題

    1 / 2 戦略1 戦略2 戦略1 4,0 2,5 戦略2 1,2 5,1 戦略3 2,6 3,3 この混合戦略のナッシュ均衡を解くことができません。 1が戦略1・2・3をとる確率をそれぞれp、q、1-p-q、2が戦略1・2をとる確率をs、1-sとおいて、期待利得を導くまではできるのです。 1の期待利得 戦略1:4s+2(1-s)=2s+2 戦略2:s+5(1-s)=-4s+5 戦略3:2s+3(1-s)=-s+3 2の期待利得 戦略1:2q+6(1-p-q)=-6p-4q+6 戦略2:5p+q+3(1-p-q)=2p-2q+3 まず1ですが、期待利得が2種類である2×2行列と違って、期待利得が3種類存在します。 また、2については変数がp・qの2種類あるので、どう処理してよいものかわかりません。 支配戦略が存在しないので、消去して2×2行列にするわけでもなさそうです。 ここから先の解法を教えてください。よろしくお願いします。

  • ナッシュ均衡を求める練習問題について

    現在、武藤滋夫氏の著書、「ゲーム理論入門」を呼んでいます。 練習問題でどうしても納得のいかない部分があったので、分かる方がいましたら解説をしていただきたいと思い、質問させていただきました。 練習問題の概要は以下の通りです。 ------------------------------- 1.A、B両氏が協力して100万円の儲けを得た。 2.それぞれの取り分は、お互いが欲しいと思う金額(100万円以内)を書いた紙を第三者に提出して決めることにする。 3.もし、両者の希望額の合計が100万円に満たない場合、それぞれは希望額を受け取る。余った金額は福祉団体へ寄付する 4.もし、両者の希望額の合計が100万円を超えた場合、全額福祉団体へ寄付する。 問い)2人はそれぞれどれだけの金額を書けばよいか。この状況を戦略形ゲームとして表現し、純粋戦略でのナッシュ均衡をすべて求めよ。 ----------------------------------- それに対して、僕は以下のように解答しました。 -------------------------------------- Aの書いた金額をx、Bの書いた金額をyとすると、 Aの利得 = x ( x + y <= 100)       0 ( x + y > 100) Bの利得 = y (x + y <= 100)       0 (x + y > 100) となる。 Bの書いた金額yを固定すると、Aの利得が最大になるのは x = 100 - y の時であり、同様にAの書いた金額xを固定すれば、 y = 100 - x が Bの最大の利得である。 つまり、x + y = 100 となる(x, y)の組であれば、A,Bどちらも最適反応戦略であり、ナッシュ均衡である。 --------------------------------------- しかし、本書の解答には、この均衡の他に (x, y) = (100, 100) がナッシュ均衡であると書いてあります。 なぜこの組がナッシュ均衡になっているのかがわかりません。 分かる方がいましたら、ぜひ解答をお願いします。