• 締切済み
  • 困ってます

二次関数の問題を教えてください!

(1)放物線y=a^2+ax+aを原点に関して対象移動し、さらに、x軸の正の方向に1、 y軸の正の方向にbだけ平行移動したところ、この放物線は点(2,0)でx軸に接した。定数a,bの値を求めよ。 (2)放物線y=x^2-2(2a-1)x+4a^2-a+3の頂点が直線y=4x-3上にあるとき、aの値を求めよ。 (3)二次関数y=x^2+2x+3のグラフをx軸方向にp,y軸方向にqだけ平行移動し、点(1,1)を通るようにする。q=-1として pの値を求めよ。 を教えてください!! こうやるのかなぁというのはわかるのですが、なかなかうまくいかず、時間をたくさんかけてしまいました。 途中式も含め回答宜しくお願いします!

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数151
  • ありがとう数0

みんなの回答

  • 回答No.1
  • info22_
  • ベストアンサー率67% (2650/3922)

(1) >放物線y=a^2+ax+aを原点に関して対象移動し 放物線とあるがx^2の項が無い! 対象移動は聞いたことが無い、対称移動の間違いでは? 問題文を正しく補足に訂正いただけませんか? (2) 放物線y=x^2-2(2a-1)x+4a^2-a+3の頂点Aの座標は、平方完成して  y=(x-2a+1)^2+3a+2 より、A(2a-1,3a+2)となる。 頂点が直線y=4x-3上にあることから、頂点の座標を代入すると  3a+2=4(2a-1)-3 aについて解くと  3a+2=8a-7  5a=9 ∴a=9/5 (3) 二次関数y=x^2+2x+3のグラフをx軸方向にp,y軸方向にqだけ平行移動すると  y-q=(x-p+1)^2+2 これが点(1,1)を通るようにするには、点の座標を代入すればよいから q=-1として  1-(-1)=(2-p)^2+2 式を整理して  0=(2-p)^2  ∴p=2

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 二次関数の問題教えてください!

    放物線y=x^2+ax+aを原点に関して対象移動し、さらに、x軸の正の方向に1、 y軸の正の方向にbだけ平行移動したところ、この放物線は点(2,0)でx軸に接した。定数a,bの値を求めよ。 がわかりません。 途中式なども含めて回答してくれたらうれしいです!!

  • 数I 二次関数

    放物線y=3x^2+2ax+8を、x軸方向に1、y軸方向に-2だけ平行移動すると放物線y=3x^2+2(a-3)x-1となるように定数aの値を定めよ。 という問題です。 y=3x^2+2ax+8 =3(x+1/3a)^2-1/3a^2+8 となり、 この式をx軸方向に1、y軸方向に-2だけ平行移動すると、 y=3(x+1/3a+1)^2-1/3a^2+6 となりました。 そして放物線y=3x^2+2(a-3)x-1を 上の式と同様にしようと思ったんですが、 完全平方にするところでつまづいてしまいました。 どなたか回答お願いします。

  • 数学Iの二次関数の問題です

    解説を見ても分からない問題があったので分かる人がいたら教えて下さい。 問 放物線y=x^2+ax+aを原点に関して対称移動し、さらに、x軸の正の方向に1,y軸の正の方向にbだけ平行移動したところ、この放物線は点(2,0)でx軸に接した。定数a,bの値を求めよ。 解説 放物線の原点に関する対称移動、平行移動と定数の値 放物線y=f(x)を原点に関して対称移動すると-y=f(-x) よって、y=x^2+ax+aは  y=-x^2+ax-a・・・(1) に移る。 一方、(1)は放物線y=-(x-2)^2を、x軸方向に-1、y軸方向に-bだけ平行移動したもの・・・(2) と一致すると考えてよい。 (2)を整理し、(1)=(2)からa,bの値を求める。 (参考) 放物線y=f(x)を、x軸方向にα,x軸方向にβだけ平行移動するとy-β=f(x-α) 回答 a=2 b=1 (2)を整理し、(1)=(2)からa,bの値を求めるのところができないんです。分かる方がいたら教えて下さい。

  • 二次関数について

    a,bは実数の定数とし、2時間数 y=x^2+(a-1)x+b のグラフをGとする。Gは点(-1,4)を通るものとする。このとき、b=a+2であり、放物線Gの頂点の座標をaのみで表すと、 (-a+1/2,-a^2+6a+7/4)となる。 (1)放物線Gがx軸の正の部分と負の部分で交わるようなaの範囲は ★a<-2 である。 (2)放物線Gがx軸の正の部分と異なる2点で交わるようなaの範囲は ★-2<a<-1 である。 と問題があるのですが、★の部分がわからないのです。 y(k)とDと軸について調べても上記の範囲になりませんでした。 どのようにして解けばいいのですか?

  • 二次関数の問題です。分かりません、教えて下さい。

    放物線y=2xの二乗-4x+1・・・(1)がある。 放物線(1)をx軸方向にp、y軸方向にqだけ平行移動した放物線は 頂点のy座標が3で、点(3,5)を通る。 このとき定数p、qの値を求めよ。 解き方が全く分かりません・・・ 詳しい解説をよろしくお願いします。

  •  二次関数の問題教えてください

     二次関数の問題教えてください (1)2つの放物線Y=2x^2-8x+9、Y=x^2+ax+bの頂点が一致するように定数a、bの値を求めよ (2)二次関数Y=2x^2+4xのグラフをx軸方向に1、Y軸方向に-2だけ平行移動したグラフの方程式を求めよ (3)二次関数Y=2x^2-8x+5のグラフはY=2x^2+4x+7をどのように平行移動したものか (4)Y=-2x^2-4x+1(-2≦x≦1)の最大値、最小値    Y=2x^2+3x+4  (0≦x≦2)の最大値、最小値 2,3,4、は解いてみたのですが答えがあいません。 わかる方求める式も一緒に教えてください

  • 二次関数

    二つの二次関数f(x)=x^2-2x+2a^2, g(x)=-x^2+2(2a-1)x-4a^2+7a-2がある。ただし、aは0<a<2を満たす定数とする。 (2)a≦x≦a+1におけるf(x)の最小値をaを用いて表せ。 (3)a≦x≦a+1におけるf(x)の最小値をmとする。a≦x≦a+1において、つねにg(x)<mとなるようなaの値の範囲を求めよ。 解法から教えてください。よろしくお願いします。

  • 二次関数の問題教えて下さい

    ★二次関数y=ax^2+3x+aの値が、全てのxの値について正となるようなaの範囲を求めよ。 という問題の解き方を教えて下さい。 ★それと、次の不等式の問題を解いたのですがこれであっていますか?  不等式(a-1)x^2+4x+2a>0がxのどんな値に対しても成立するように、定数aの値の範囲を定めよ。  (a-1)x^2+4x+2a=0の判別式をDとすると  D=16-8a^2+8a  D<0であればよいから  (a+1)(a-2)>0       a<-1 2<a 以上の二つについてよろしくお願いします。

  • どなたか二次関数を教えて頂けないでしょうか

    どなたか二次関数を教えて頂けないでしょうか aを実数の定数とする。xの二次関数 y=-x^2+2ax-4a-12...(1) のグラフをCとする。 Cの頂点をPとすると、 P(a,a^2-アa-イウ) である。 (1)Cがx軸と異なる二点で交わるようなaの値の範囲は a<エオ,カ<a である。 (2)二次関数(1)の最大値が20となるようなaの値は a=キク,ケ である。 (3)a=ケのとき、 f(x)=-x^2+2ax-4a-12 とし、kを正の定数とする。 k≦x≦4kにおけるf(x)の最大値が20で、最小値がf(4k)となるようなk の値の範囲は コサ/シ≦k≦ス である。このとき、g(k)=f(k)-f(4k)とすると、g(k)のとりうる値の範囲は セ≦g(k)≦ソタチ である。 これが全く分かりません。 どなたか助けて下さい。 よろしくお願い致します。

  • 二次関数の問題です

    参考書の解答を読んでわからない点がありました。教えてください。 放物線y=3x^2-6x+5をx軸方向にs,y軸方向にtだけ平行移動させると,放物線y=ax^2+12x+16となる。このとき,定数a,s,tの値を求めよ。 y=3x^2-6x+5…(1) y=ax^2+12x+16…(2) (1)をx軸方向にs,y軸方向にtだけ平行移動させると y-t=3(x-s)^2-6(x-s)+5 ∴y=3x^2-6(s+1)x+3s^2+6s+t+5…(3) ここまでは分かります。次の 題意より,(2)と(3)が一致するから について、(2)(3)が一致とはどのような意味なのでしょうか? ご面倒ですがどなたか教えてください。

専門家に質問してみよう