• ベストアンサー
  • 困ってます

二次関数の問題教えてください!

放物線y=x^2+ax+aを原点に関して対象移動し、さらに、x軸の正の方向に1、 y軸の正の方向にbだけ平行移動したところ、この放物線は点(2,0)でx軸に接した。定数a,bの値を求めよ。 がわかりません。 途中式なども含めて回答してくれたらうれしいです!!

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数73
  • ありがとう数0

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
  • ferien
  • ベストアンサー率64% (697/1085)

>放物線y=x^2+ax+aを原点に関して対象移動し、さらに、x軸の正の方向に1、 >y軸の正の方向にbだけ平行移動したところ、この放物線は点(2,0)でx軸に接した。 >定数a,bの値を求めよ。 原点に関して対称移動だから、x→-x,y→-yに移ることだから、 -y=(-x)^2+a(-x)+aより、 y=-x^2+ax-a を平方完成して、 =-(x^2-ax+a^2/4)+a^2/4-a =-(x-a/2)^2+a^2/4-a x軸の正の方向に1、y軸の正の方向にbだけ平行移動した から、 y=-(x-a/2-1)^2+a^2/4-a+bより、 頂点は、(a/2+1,a^2/4-a+b) この放物線は点(2,0)でx軸に接した から、 頂点が(2,0)と言うことだから、 a/2+1=2, a^2/4-a+b=0 とおくと、答えが出ます。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 二次関数の問題を教えてください!

    (1)放物線y=a^2+ax+aを原点に関して対象移動し、さらに、x軸の正の方向に1、 y軸の正の方向にbだけ平行移動したところ、この放物線は点(2,0)でx軸に接した。定数a,bの値を求めよ。 (2)放物線y=x^2-2(2a-1)x+4a^2-a+3の頂点が直線y=4x-3上にあるとき、aの値を求めよ。 (3)二次関数y=x^2+2x+3のグラフをx軸方向にp,y軸方向にqだけ平行移動し、点(1,1)を通るようにする。q=-1として pの値を求めよ。 を教えてください!! こうやるのかなぁというのはわかるのですが、なかなかうまくいかず、時間をたくさんかけてしまいました。 途中式も含め回答宜しくお願いします!

  • 数学Iの二次関数の問題です

    解説を見ても分からない問題があったので分かる人がいたら教えて下さい。 問 放物線y=x^2+ax+aを原点に関して対称移動し、さらに、x軸の正の方向に1,y軸の正の方向にbだけ平行移動したところ、この放物線は点(2,0)でx軸に接した。定数a,bの値を求めよ。 解説 放物線の原点に関する対称移動、平行移動と定数の値 放物線y=f(x)を原点に関して対称移動すると-y=f(-x) よって、y=x^2+ax+aは  y=-x^2+ax-a・・・(1) に移る。 一方、(1)は放物線y=-(x-2)^2を、x軸方向に-1、y軸方向に-bだけ平行移動したもの・・・(2) と一致すると考えてよい。 (2)を整理し、(1)=(2)からa,bの値を求める。 (参考) 放物線y=f(x)を、x軸方向にα,x軸方向にβだけ平行移動するとy-β=f(x-α) 回答 a=2 b=1 (2)を整理し、(1)=(2)からa,bの値を求めるのところができないんです。分かる方がいたら教えて下さい。

  • 二次関数の問題です。分かりません、教えて下さい。

    放物線y=2xの二乗-4x+1・・・(1)がある。 放物線(1)をx軸方向にp、y軸方向にqだけ平行移動した放物線は 頂点のy座標が3で、点(3,5)を通る。 このとき定数p、qの値を求めよ。 解き方が全く分かりません・・・ 詳しい解説をよろしくお願いします。

  • 数I 二次関数

    放物線y=3x^2+2ax+8を、x軸方向に1、y軸方向に-2だけ平行移動すると放物線y=3x^2+2(a-3)x-1となるように定数aの値を定めよ。 という問題です。 y=3x^2+2ax+8 =3(x+1/3a)^2-1/3a^2+8 となり、 この式をx軸方向に1、y軸方向に-2だけ平行移動すると、 y=3(x+1/3a+1)^2-1/3a^2+6 となりました。 そして放物線y=3x^2+2(a-3)x-1を 上の式と同様にしようと思ったんですが、 完全平方にするところでつまづいてしまいました。 どなたか回答お願いします。

  • 二次関数

    (1)x軸と点(2,0)で接し、点(3,2)を通る。 (2)放物線y=4x²-2x+3をx軸方向に1、y軸方向に2だけ平行移動したもの。 解法が分からないので、回答よろしくお願いします。

  • 二次関数の問題です

    参考書の解答を読んでわからない点がありました。教えてください。 放物線y=3x^2-6x+5をx軸方向にs,y軸方向にtだけ平行移動させると,放物線y=ax^2+12x+16となる。このとき,定数a,s,tの値を求めよ。 y=3x^2-6x+5…(1) y=ax^2+12x+16…(2) (1)をx軸方向にs,y軸方向にtだけ平行移動させると y-t=3(x-s)^2-6(x-s)+5 ∴y=3x^2-6(s+1)x+3s^2+6s+t+5…(3) ここまでは分かります。次の 題意より,(2)と(3)が一致するから について、(2)(3)が一致とはどのような意味なのでしょうか? ご面倒ですがどなたか教えてください。

  • 二次関数について

    a,bは実数の定数とし、2時間数 y=x^2+(a-1)x+b のグラフをGとする。Gは点(-1,4)を通るものとする。このとき、b=a+2であり、放物線Gの頂点の座標をaのみで表すと、 (-a+1/2,-a^2+6a+7/4)となる。 (1)放物線Gがx軸の正の部分と負の部分で交わるようなaの範囲は ★a<-2 である。 (2)放物線Gがx軸の正の部分と異なる2点で交わるようなaの範囲は ★-2<a<-1 である。 と問題があるのですが、★の部分がわからないのです。 y(k)とDと軸について調べても上記の範囲になりませんでした。 どのようにして解けばいいのですか?

  •  二次関数の問題教えてください

     二次関数の問題教えてください (1)2つの放物線Y=2x^2-8x+9、Y=x^2+ax+bの頂点が一致するように定数a、bの値を求めよ (2)二次関数Y=2x^2+4xのグラフをx軸方向に1、Y軸方向に-2だけ平行移動したグラフの方程式を求めよ (3)二次関数Y=2x^2-8x+5のグラフはY=2x^2+4x+7をどのように平行移動したものか (4)Y=-2x^2-4x+1(-2≦x≦1)の最大値、最小値    Y=2x^2+3x+4  (0≦x≦2)の最大値、最小値 2,3,4、は解いてみたのですが答えがあいません。 わかる方求める式も一緒に教えてください

  • 二次関数

    こんばんは。 よろしくお願いいたします。 放物線y=2x^2+bx+cをx軸方向に-2,y軸方向に1だけ平行移動すると、2点(-1,9),(2,3)を通る。定数b,cの値を求めよ。 という問題がわかりませんでした。 私は、移動した式をy=2(x+2)^2-1としてまでしかわかりませんでした・・。 でもこの式でb.cが求められないのでできないと思って解法をずっと考えているのですが、、思いつきません。 いつもすみません。 よろしくお願いいたします。

  • 数I 二次関数

    平面上に2点A(2,4),B(-1,4)と放物線y=2x^2がある。この放物線を平行移動して、2点A,Bを通るようにするには、x軸方向に(ア)、y軸方向に(イ)だけ平行移動すればよい。 という問題です。 AとBをy=a(x-p)^2+q に代入していくのかと思ったんですがどうもうまくいきません。 そもそもA,Bは点だから二次関数ではないという可能性もありますよね?? どのようにすれば解くことができるでしょうか。 どなたか回答お願いします。

専門家に質問してみよう