• ベストアンサー
  • すぐに回答を!

数学Iの二次関数の問題です

解説を見ても分からない問題があったので分かる人がいたら教えて下さい。 問 放物線y=x^2+ax+aを原点に関して対称移動し、さらに、x軸の正の方向に1,y軸の正の方向にbだけ平行移動したところ、この放物線は点(2,0)でx軸に接した。定数a,bの値を求めよ。 解説 放物線の原点に関する対称移動、平行移動と定数の値 放物線y=f(x)を原点に関して対称移動すると-y=f(-x) よって、y=x^2+ax+aは  y=-x^2+ax-a・・・(1) に移る。 一方、(1)は放物線y=-(x-2)^2を、x軸方向に-1、y軸方向に-bだけ平行移動したもの・・・(2) と一致すると考えてよい。 (2)を整理し、(1)=(2)からa,bの値を求める。 (参考) 放物線y=f(x)を、x軸方向にα,x軸方向にβだけ平行移動するとy-β=f(x-α) 回答 a=2 b=1 (2)を整理し、(1)=(2)からa,bの値を求めるのところができないんです。分かる方がいたら教えて下さい。

共感・応援の気持ちを伝えよう!

  • 回答数3
  • 閲覧数120
  • ありがとう数2

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.3
  • info22
  • ベストアンサー率55% (2225/4034)

>放物線y=-(x-2)^2を、x軸方向に-1、y軸方向に-bだけ平行移動したもの・・・(2) (2)の式は y+b=-(x+1-2)^2 つまり y=-(x-1)^2-b = -x^2 +2x -1-b ・・・(2') (1)と(2')は同じ式ということですので、 係数を比較すれば、a=2, a=1+b がでてきますよ。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

分かりました!!ありがとうございます。

関連するQ&A

  • 二次関数の問題教えてください!

    放物線y=x^2+ax+aを原点に関して対象移動し、さらに、x軸の正の方向に1、 y軸の正の方向にbだけ平行移動したところ、この放物線は点(2,0)でx軸に接した。定数a,bの値を求めよ。 がわかりません。 途中式なども含めて回答してくれたらうれしいです!!

  • 二次関数の問題を教えてください!

    (1)放物線y=a^2+ax+aを原点に関して対象移動し、さらに、x軸の正の方向に1、 y軸の正の方向にbだけ平行移動したところ、この放物線は点(2,0)でx軸に接した。定数a,bの値を求めよ。 (2)放物線y=x^2-2(2a-1)x+4a^2-a+3の頂点が直線y=4x-3上にあるとき、aの値を求めよ。 (3)二次関数y=x^2+2x+3のグラフをx軸方向にp,y軸方向にqだけ平行移動し、点(1,1)を通るようにする。q=-1として pの値を求めよ。 を教えてください!! こうやるのかなぁというのはわかるのですが、なかなかうまくいかず、時間をたくさんかけてしまいました。 途中式も含め回答宜しくお願いします!

  • 高等学校数学の二次関数について

    こんばんは。 二次関数についてで質問があります。 ある一つの問題なのですが、文の一部に分からない表現がありました。 下に記します。 :放物線 y=x^2+ax+a を原点に関して対称移動し、(中略) 定数a,bの値を求めよ。 この問題の中に、放物線~を原点に関して対称移動し とありますが、これはどういうことでしょうか? 解説文によると、 ・放物線 y=f(x) を原点に関して対称移動すると、 -y=f(-x) よって、y=x^2+ax+a は y=-(x^2)+ax-a に移る。 とのことですが、何故このような結果になるのでしょうか? また、原点に関して対称移動とはどういうことなのでしょうか? 解説をお願い致します。

その他の回答 (2)

  • 回答No.2

(2)を整理は、 y+b = -(x-2+1)^2を展開してみましょう。 そして、 (1)とxの係数と、定数項が一致するように、 連立方程式を立てて解けばよいです。

共感・感謝の気持ちを伝えよう!

  • 回答No.1

つまり、(2)を求めることが出来ないということですか? 参考にあるとおりに、y=-(x-2)^2を移動させればよいだけです。 移動させたら、それをy=px^2+qx+rの形にして(p=-1なのは明白ですが)、(1)のy=-x^2+ax-aと係数を比較すれば求まります。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 二次関数の問題です

    参考書の解答を読んでわからない点がありました。教えてください。 放物線y=3x^2-6x+5をx軸方向にs,y軸方向にtだけ平行移動させると,放物線y=ax^2+12x+16となる。このとき,定数a,s,tの値を求めよ。 y=3x^2-6x+5…(1) y=ax^2+12x+16…(2) (1)をx軸方向にs,y軸方向にtだけ平行移動させると y-t=3(x-s)^2-6(x-s)+5 ∴y=3x^2-6(s+1)x+3s^2+6s+t+5…(3) ここまでは分かります。次の 題意より,(2)と(3)が一致するから について、(2)(3)が一致とはどのような意味なのでしょうか? ご面倒ですがどなたか教えてください。

  • 数学I(2次関数)

    次の問題の解説と解答を頂きたいです! (1)放物線y=x^2-2x+2をx軸方向に‐3だけ平行移動し、さらに原点に関し対象移動した放物線の方程式を求めよ (2)関数y=x^2+2(a-1)x (‐1≦x≦1)の最大値M(a)、最小値m(a)を求めよ (3)関数f(x)=ax^2-2ax+b (-1≦x≦1)の最大値が9、最小値が1であるとき、定数a,bの値を求めよ

  • 二次関数の問題です。分かりません、教えて下さい。

    放物線y=2xの二乗-4x+1・・・(1)がある。 放物線(1)をx軸方向にp、y軸方向にqだけ平行移動した放物線は 頂点のy座標が3で、点(3,5)を通る。 このとき定数p、qの値を求めよ。 解き方が全く分かりません・・・ 詳しい解説をよろしくお願いします。

  • 二次関数の問題教えてください。

    放物線y=f(x)をx軸方向に-2,y軸方向に2だけ平行移動したところ、放物線y=x^2+2(2-a)+2(1-2a)が得られた。ただしaは定数である。f(x)を求めよ。 という問題なのですが、難しくてなかなか理解できません。誰かわかる方解説お願いします。

  • 数学I 2次関数

    対称移動の問題です。 放物線 y= xの二乗+ ax + b を原点に関して対称移動し、さらにy軸方向に8だけ平行移動すると、放物線 y= -xの二乗 + 7x + 5 が得られるという。定数a,bの値を求めよ。 お願いします。

  • 数I 二次関数

    放物線y=3x^2+2ax+8を、x軸方向に1、y軸方向に-2だけ平行移動すると放物線y=3x^2+2(a-3)x-1となるように定数aの値を定めよ。 という問題です。 y=3x^2+2ax+8 =3(x+1/3a)^2-1/3a^2+8 となり、 この式をx軸方向に1、y軸方向に-2だけ平行移動すると、 y=3(x+1/3a+1)^2-1/3a^2+6 となりました。 そして放物線y=3x^2+2(a-3)x-1を 上の式と同様にしようと思ったんですが、 完全平方にするところでつまづいてしまいました。 どなたか回答お願いします。

  • 二次関数

    こんばんは。 よろしくお願いいたします。 放物線C1:y=-x^2+2x-1を原点に関して対称移動し、更にx軸に関して対称移動した放物線C2の方程式はy=(ア)であり、C2は放物線C1を(イ)に関して対称移動した放物線」である。 という問題がわかりませんでした。 私のまちがった考えを一様載せます。 (ア)はx軸に対称にしたので、x軸もそもままだし、y軸は正になったのでもともとの式になってしまいました。 (イ)はx軸だと思ってしまいました。 解説よろしくお願いいたします。

  • 高校数学I 二次関数 最大値、最小値の問題が分かりません。

    以下の問題が分かりません。 2次関数f(x)=ax^2-3ax+2a+1がある。ただし、aは0でない定数とする。 (1)0≦x≦2におけるf(x)の最大値がa^2-14であるとき、aの値を求め  よ。 (2)y=f(x)のグラフをx軸方向にaだけ平行移動したグラフをあらわす2次関数をy=g(x)とする。0≦x≦2における関数g(x)の最大値をaを用いて表せ。 (1)についてはa>0の場合とa<0の場合に分けて、やろうと思ったのですが、a<0の場合がうまくいきません。 (2)については平行移動したものなので傾きがaであるということは分かるのですが、そこから先が全く分かりません。 回答よろしくお願いします。

  • 二次関数

    こんばんは   次の2問で質問があります。よろしくお願いいたします。 (1)関数f(x)の最小値とそのときのxの値を求めよ。 f(x)=|x+|3x-24|| (2)放物線y=ax^2+bx+2aの頂点のx座標は4であり、また、この放物線は点(-2,11)を通る。このとき、係数a,bの値とこの放物線の頂点の座標を求めよ。 (1)はf(x)=|x+3x-24|=|4x-24|とやり、x=6と出して、 x≧6とx<6の場合わけした結果だめでした。 (2)はまず、y=ax^2+bx=2aをa(x^2+b/ax)+2a=a(x+b/2a)+(8a-b^2)/4aとしてみましたが、よくわからず、答を導くことができませんでした。 数学が苦手ですが、頑張ります。 教えてください。よろしくお願いいたします。

  • 二次関数の問題について少し納得のいかない部分が…

    二次関数の問題について少し納得のいかない部分が… タイトル通りです。以下がその問題です。 aを正の定数、bを実数の定数とし、f(x)=ax^2-4ax+6a+b とする。 a=1であるときを考える。 放物線y=f(x)とx軸が異なる2点で交わり、それらのx座標がいずれも 0<x<5 の範囲にあるとき、 bの値の範囲を求めよ。 この問いの解は、-6<x<-2 となっているのですが、-11<x<-2 ではないのですか? f(0)=b+6>0, f(2)=b+2<0 であるから… という説明が記されているのですが、どうも合点がいきません。 f(0)のときのbについての不等式はいいのに、f(5)のときは駄目なのでしょうか? この質問に対する回答に時間を割いていただける方、回答を頂ければ幸いです。

専門家に質問してみよう