ベストアンサー 中学・数学 2011/12/11 17:15 次の時、AEの長さを求めたいです。 解説を宜しくお願いします。 A,B,Cは円周上の点。 ∠BACの二等分線と円周との交点をDとする。 AB=AC=6cm DE=5cm 画像を拡大する みんなの回答 (1) 専門家の回答 質問者が選んだベストアンサー ベストアンサー Kirby64 ベストアンサー率27% (668/2450) 2011/12/11 17:34 回答No.1 ヒンツ:△ABDと△AECは相似ニャ。 質問者 お礼 2011/12/11 17:47 あ!大切な所を見落としていたようです。 ありがとうございました。 賢い猫ですね。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 中学の数学です △ABCにおいて、∠Aの二等分線と辺BCとの交点をD、∠Aの外角の二等分線と辺BCの延長線との交点をEとする。AB=8cm BC=7cm CA=6cmのとき、DEの長さを求めよ。 解説にBE:CE=AB:AC=4:3とあるのですが、その理由がわかりません! わかる方詳しい解説をお願いします。 中学の数学 AB=5cm BC=3cm ∠C=90°の直角三角形ABCにおいて∠Bの二等分線と辺ACとの交点をDとする。2点C、Dから辺ABにそれぞれ垂線CE、DFを引く。 CEの長さとEFの長さを教えて下さい。 ※ AB:AC:BC=5;4;3になってるところまで分かりました。 たぶん三平方の定理をつかうと思うのですが、ここからよく分からなくなってしまいました。 教えて下さい!! 数学 相似の問題 学校のプリントの問題です。 下の図のように、円周上の3点A、B、Cを頂点とし、AB=AC=6cm、BC=4cmである △ABCがある。 ∠Bの二等分線と、辺AC、弧ACとの交点をそれぞれD、Eとし、点Cと 点Eを線分で結ぶ。 また、辺BCの延長と弦AEの延長との交点をFとする。 (4) AE:AFを最も簡単な整数の比で答えなさい。 解き方を教えてください! 数Iの問題 △ABCにおいて AB=3 , AC=8 , ∠BAC=60°である。 ∠BACの二等分線と辺BCとの交点をD, ∠ABCの外角の二等分線と直線ADとの交点をEとすると BD:DC=AB:(オ) AE:ED=AB:(カ) である。 答えは オ→AC カ→BD どうしてそうなるのかわからないので 解説をお願いします。 中3 数学 図形 AB=3cm、AC=2cmの△ABCがある。∠Aの外角の二等分線とBCの延長との交点をDとしAC∦EDとなるような点EをABの延長上にとる。CD=4cmであるとき、 (1)∠BACの二等分線とBCとの交点をFとするとき、BFの長さを求めなさい。 (2)△ABFと△ADEの面積比をもっとも簡単な整数の比であらわしなさい。 以上二問です。よろしくお願いします。 中2 数学 図形 今日のテストでこのような問題がでました。 AB=10cm、BC=10cm、AC=12cmの△ABCがあります。 この三角形の∠Bの二等分線と∠Cの二等分線との交点を点Pとします。 また、点Pを通り辺BCと平行な線をひき、 辺ABとの交点をD、辺ACとの交点を点Eとします。 (1)△ADEの周の長さを求めなさい。 という問題です。 答えも解き方も全く分かりません。 回答お待ちしています。 ベクトルの問題2 三角形ABCにおいて、AB:AC=5:2とする。 辺ABを2:3に内分する点をDとし、∠BACの二等分線と辺との交点をEとする。 また、線分CDと線分AEとの交点をFとする。 (1)AEベクトルおよびAFベクトルをそれぞれABベクトルとACベクトルを用いて表せ。また、AFベクトルはAEベクトルの何倍と表されるか。 (2)AB=10、AC=4、∠BAC=Π/3であるとき、三角形ABCと三角形ABEおよび四角形BEFDの面積について △ABC=○ △ABE=○ (四角形BEFDの面積)=○ である。 (2)は○を求める問題です。 (1)のAEベクトルは∠BACの二等分線と辺BCの交点がEなので(ABベクトル+ACベクトル)/2だとわかったのですが、AFが出せません。 ベクトルの基本的な問題なのですが、解き方を忘れてしまい、ノートや教科書の類題を見ても完璧に理解することができずに困っています(--;) 解説よろしくお願いいたします。 中二数学 図形 もう一問おねがいします。 △ABCで∠Bの二等分線と点Cにおける外角の二等分線の交点D。Dを通って辺BCに平行な直線と辺AB,ACの交点をE、Fとする。BE=6cm BC=7cmのとき、台形EBCFの周の長さを求めなさい。 中学の数学の問題です! 兄弟に聞かれたのですが、もう忘れてしまっていて解けなかったので、お恥ずかしながら質問させて頂きます。 大至急お願いします! 画像のような、 ∠BAC=90°の直角三角形ABCがある。 点Aから辺BCに垂直な直線をひき、 辺BCとの交点をDとする。 また、∠ABCの二等分線をひき、 線分ADとの交点をE、辺ACとの交点をFとする。 (問題) AE=4cm、ED=3cm、BE=10cmのとき、AF、EFは何センチか。 また、△AEFの面積は、△DBEの面積の何倍か。 この中学生の問題をお教えください。 三角形ABCで角Bの二等分線と頂点Cにおける外角の二等分線との交点をDとする。また、Dを通りBCに平行な直線と、AB、ACとの交点をそれぞれE,Fとする。BE=6cm、BC=7cmのとき、台形EBCFの周の長さを求めなさい。 中学生のこの問題の解きかたお教えください。 AB=3cm、BC=4cm、CAが2cmの△ABCと<BACの二等分線lがある。点B,Cから直線lに垂線をひき、それぞれの交点をD,Eとする。また直線lがBCおよび△ABCの外接円と交わる点をそれぞれF,Gとする。 AFの長さを求めなさい。 答えは3√6÷5です。 子供に教えたいのでよろしくお願いいたします。 二等分線であることの証明 △ABCの辺BC上の点Pについて、BP:PC=AB:ACが成り立つならばAPは∠Aの二等分線である。・・・(*) 四角形ABCDの2つの内角∠A、∠Cの二等分線の交点が、対角線BD上にあるならば、2つの内角∠B、∠Dの二等分線の交点も、対角線AC上にあることを、(*)を使って証明せよ。 (解答) ∠A、∠Cの二等分線の交点をE、∠Bの二等分線とACの交点をFとする。AE、CEはそれぞれ∠A、∠Cの二等分線であるから、△ABDにおいて BE:ED=AB:AD △BCDにおいてBE:ED=BC:CD よってAB:AD=BC:CDから AB・CD=AD・BC これから 【AB:BC=AD:CD】・・・(1) BFは∠Bの二等分線であるから、△ABCにおいて AF:CF=AB:BC・・・(2) (1)、(2)から AF:CF=AD:CD したがって、(*)からFDは∠Dの二等分線である。ゆえに、題意は示された。 質問は、【 】でくくった部分です。 なぜ、そのような式ができたのか理由を教えてください。 よろしくお願いします。 数学 II 数学です。 「△ABCで、∠Aの二等分線と辺BCの交点をDとします。 ここで、CA〃DEとなるように、点Eを辺AB上にとる。 また、BC〃EFとなるように点Fを辺AC上にとる。 このとき、AE=CFとなることを照明せよ。」 できるだけ詳しくお願いします。 下手ですが、画像も参考にしてください。 わかりづらいとは思いますがご協力お願いします。 数学 幾何 「三角形ABCの∠BACの二等分線とBCとの交点をDとするとき、AB+AD=CD, AC+AD=BC であるという。∠ABCと∠ACBの大きさをそれぞれ求めよ。」 中学でもわかるように説明してください。お願いします。 数学の面積を求める問題です。 図で、三角形ABCの辺BCを直径とする半円Oと辺AB、辺ACとの交点をそれぞれD、Eとする。 頂点Bと点E、頂点Cと点Dをそれぞれ結び、線分BEと線分CDとの交点をFとする。 ∠ABC=60°、∠ACB=75°、BC=4cmのとき、線分ADと線分AEと弧DEで囲まれる図形の面積は何cm2か。ただし、円周率はπ(パイ)とする。 (解説も宜しくお願いします。) 数学の証明問題について 数学の証明の問題がわからないので質問させていただきます。 この問題の答えとできたら解き方も教えていただきたいです。 1.正三角形ABCの辺ACの中点をDとし、辺BCのCを超えた延長上に点EをCD=CEであるようにとれば、DB=DEである。 2.二等辺三角形ABCにおいてAB=ACとする。辺AC上の点をD、辺BCのCを超えた延長上に点EをCD=CEであるようにとったとき、DB=DEとなるのは、Dがどんな点の場合か。 3.問題2から次の問題を得る。△ABCにおいて、AB=ACとし、∠Bの二等分線とACとの交点をDとする。BCのCの超えた延長上に点Eを、CD=CEであるようにとればDB=DEである。 4.△ABCにおいてAB=ACとし、辺ACの中点をDとする。辺BCのCを超えた延長上の点をEとしたとき、DB=DEとなるのは、Eがどんな点の場合か。 5.問題4から次の問題を得る。△ABCにおいてAB=ACとし、辺ACの中点をDとする。辺BCのCを超えた延長上に点EをCE=1/2BCにとればDB=DEである。 6.直角二等辺三角形ABCにおいて∠A=90°とし、∠Bの二等分線とACとの交点をDとする。CからBDへの垂線の足をEとすれば、BD=2CEである。 以上、6個の問題です。 回答よろしくお願いしますm(_ _)m 数学の図形 解けないので解答お願いします △ABCで、∠B,∠Cの二等分線の交点をOとする。 Oを通り、辺BCに平行な直線と、 辺AB、AC、との交点をそれぞれD、Eとする。 AB=8cm、BC=10cm、CA=12cmのとき、 △ADEの3辺の長さの和を求めなさい。 よろしくお願いします。 中学数学の図形の問題です 教えてください 図のようにAB=6 AC=3 ∠ACB=90°の直角三角形ABCがあり、∠BACの二等分線と辺BCとの交点をDとする。また∠BCG=90°の直角三角形BCGがある。円Oは辺BC、CG、BGとそれぞれ点D、E、Fで接している。 (1)円の半径はいくつか (2)FGの長さはいくつか (3)△BFCの面積はいくつか よろしくお願いします 図形の問題(数A) 問.△ABCにおいて、∠Bの二等分線が辺ACと交わる点をD,∠Cの二等分線が辺ABと交わる点をEとする。 BC=a,CA=b,AB=cとするとき、線分BE,CDの長さをa,b,cで表せ といった問題なのですが、解説を見ると 【解説】CEは∠Cの二等分線であるから AE:EB=CA:CB=b:a 「よって BE=a/a+b AB=ac/a+b」 と書いてあるんですが 「」内の部分がどうしてそうなるのかわかりません。 何方かわかりやすく説明して頂けませんか。 お願いします 二等分線 三角形 ABC において,BC=4,AC=6,∠B=60°とします. ここで,∠Aの二等分線とBCの交点をD,∠Cの二等分線とABの交点をE, ADとCEの交点をFとしたとき, (1)∠AFCを求めよ. (2)AE+CDを求めよ. という問題があったのですが, (1)は120°とわかりました. (2)のほうは余弦定理等を使うと6と求まったのですが, 中学の範囲で解くにはどのようにしたらよいのでしょうか. AB:AC=BD:DC などを使うとは思うのですが… ヒントをお願いします.
お礼
あ!大切な所を見落としていたようです。 ありがとうございました。 賢い猫ですね。