- ベストアンサー
解が三角関数で表される2次方程式
- 解が三角関数で表される2次方程式
- 与えられた2次方程式に対し、解と係数の関係からsinΘ+cosΘ=2a-1、sinΘcosΘ=-a/2などの関係が成り立つ。
- aの取り得る範囲はa>0であり、さらにsinΘやcosΘの取り得る範囲によっても制限される。
- みんなの回答 (3)
- 専門家の回答
質問者が選んだベストアンサー
その他の回答 (2)
- Mr_Holland
- ベストアンサー率56% (890/1576)
関連するQ&A
- 三角比の2次方程式の解の個数という問題でわからない問題があるので、教え
三角比の2次方程式の解の個数という問題でわからない問題があるので、教えて下さい。 30°≦Θ≦180°とする。sin^2Θ+cosΘ-a=0・・・? について、 (1) ?が解をもつための定数aの値の範囲を求めよ。 (2) ?が異なる2個の解をもつための定数aの値の範囲を求めよ。 なのですが、 (1)はsin^2を(1-cos^2)にして、aを移行して、 -1≦a≦5/4 になるのはわかったのですが、 (2)の求め方が解説を読んでも理解できません(汗 答えは1/4+√3/2≦a<5/4 になるそうです。 どういう風に解けばよいのかがわかりません。 教えて下さい!!
- ベストアンサー
- 数学・算数
- 数IIの三角関数の問題
数IIの三角関数の問題 次の3つの問題が分かりません。 解説をお願いします。 1、関数 y=cos2x-sinx(0≦x<2π) の最大値と最小値を求めよ。 また、与えられた実数aに対して、方程式 cos2x-sinx=a(0≦x<2π)の解の個数を求めよ。 2、45°≦θ≦135°のとき、関数f(θ)=3(sinθ)^2+4√3sinθcosθ-(cosθ)^2の最大値と最小値を求めよ。 3、aを定数とする。xについての方程式 (cosx)^2+2a(sinx)-a-1=0 の 0≦x≦2π における異なる実数解の個数を求めよ。
- ベストアンサー
- 数学・算数
- 三角方程式の解の個数
二次関数の解の個数とは違ってあせっています。 sin^2Θ-cos^2Θ+a=0 ただし0≦Θ<2π aが解を持つための条件は f(t)=(t+1/2)^2 - 5/4 だから -5/4≦a≦1 ここまではわかるんですが (2)この方程式の解の個数をaの値の範囲によって 調べよ・・・ なんか たとえばa=5/4 のとき t=-1,0 コレを満たすのは π、π/2,3π/2の三個 これはわかるんですが aが範囲になると・・・ -5/4<a<-1 のとき 四個 この四個がどうやって出すのかがわからないです アドバイス待ってます~
- ベストアンサー
- 数学・算数
- 三角方程式の解の存在条件
こんにちは。よくわからないところがあるのでお聞きします。 まず sin二乗θ+ acosθ-2a-1=0 を満たすθがあるような定数aの値の範囲を求めなさい このような問題があるとき、参考書の解法ではcosθ=xと考えて↑の式を整理する。(それをf[x]とする) それでその関数f[x]=0が-1≦x≦1の範囲に少なくとも1つの解をもつことをつかう。とかいてあります。 ここがよくわからないのです。なぜその関数が少なくとも1つ解をもつと定数aの値がもとまるのですか。 回答お願いします。長文ですみません。
- ベストアンサー
- 数学・算数
- 三角関数の問題のわからないところですpt2
センターの三角関数の問題です。わからないところ以外の空欄は埋めています。 0≦θ<360°のときy=2sinθcosθ-2sinθ-2cosθ-3とする。 x=sinθ+cosθとすると、y=x^2 -2x - 4とかける。 x=√2sin(θ+45°)であるから、xの値の範囲は-√2≦x≦√2である。 したがって、yはθ=225°のとき最大値2(√2 - 1)をとり、最小値は-5である。 さらにkを定数とし、θの方程式2sinθcosθ-2sinθ-2cosθ-3=kが相異なる3個の解をもつときk=( )である 最後の空欄に関してなのですが、どのような順序で求めれば良いのかわかりません。sinθの値とθの解の個数の関係は理解しているつもりなのですが、今回はsinθではなく√2sin(θ+45°)となっているので混乱しています。よろしくお願いします。
- ベストアンサー
- 数学・算数
- 2次関数、三角比の問題を教えてください。
わからないことがあります。(^2は二乗) 【1】mx^2+(1-5m)x+4m=0の2つの実数解が1より大であるような定数mの範囲を求めよ。 という問題で、解答が まず、実数条件からm≦1/9、1≦m ・・・(1) 次に、実数解をα、βとすると、 α>1、β>1⇔α-1>0、β-1>0 ∴(α-1)+(β-1)>0、(α-1)(β-1)>0 解と係数の関係を用いて変形すると (α-1)+(β-1)=(3m-1)/m>0(両辺にm^2をかけて計算するんだよ!)∴m<0、1/3<m ・・・(2) (以下略) とあるのですが、私はmをかけて計算したので、(2)の部分では1/3<mしか出ませんでしたが、結局その後の計算でm<0も出たので答えは合いました。なのでmでも良いのかと思ったのですが、似たような他の問題を解いたら二乗をかけないと答えが間違ってしまう問題がありました。、「両辺にm^2をかけて計算するんだよ!」と書いてある場所にはなぜmではなくてmの二乗をかけないといけないのでしょうか? 【2】(cosθ+sinθ)/(cosθ-sinθ)=√2-1のとき、tanθ、cos^2θの値を求めよ。 という問題で、解答が 与式から cosθ+sinθ=(√2-1)cosθ-(√2-1)sinθ ∴√2sinθ=(√2-2)cosθ ∴tanθ=√2(1-√2)/√2=1-√2 (以下略) と書いてあるのですが、√2sinθ=(√2-2)cosθからどのように計算してtanθ=√2(1-√2)/√2=1-√2になるのでしょうか?私はtanθ=sinθ/cosθを使ってやろうとしたのですが、よくわからなくて答えを見たのですが答えを見てもいまいち理解出来ません。tanθ=sinθ/cosθを使っているのだと思うのですが、sinθの係数が分母に、cosθの係数が分子になっているのはなぜでしょうか? どちらか一方でも良いのでどなたかお願いします!
- ベストアンサー
- 数学・算数
- 三角関数の方程式
y=x+√(3)*sin(x)-cos(x) 0<=x<=2π のときの微分係数が0になるxを求めたい。 y'=1+√(3)*cos(x)+sin(x) y'=0 より 1+√(3)*cos(x)+sin(x)=0 ---(1) (1)を解くのに cos^2(x)+sin^2(x)=1 を使って sin(x)=√(1-co^2(x))を代入して求めたら x=π/2,3π/2,5π/6,7π/6 が得られたのですが、π/2と7π/6は y'が0になりません。 定義域の関係なのかよくわかりません。 なぜ得られたπ/2と7π/6をy'の式に代入したら0にならないか教えて下さい。
- ベストアンサー
- 数学・算数
- 2次方程式の2つの解 α β
2次方程式x^2+ax+b=0の2つの解をα、β(α<β)とするとき、α+β、α-βを2つの解とする2次方程式の1つがx^2+bx+a=0である。このとき、定数a、bの値を求めよ。ただし、b≠0とする。 ―――――――――― 解と係数の関係より α+β=-a・・・・(1) αβ=b・・・・・・(2) またx^2+bx+a=0の2解がα+β、α-βであるから 解と係数の関係より (α+β)+(α-β)=-b (α+β)(α-β)=a ―――――――――― ここまでは考えたのですが、この後どうしたらいいのかわからず悩んでいます。 よろしくお願いします。
- ベストアンサー
- 数学・算数