• ベストアンサー

三角関数の問題です。

三角関数の問題です。 2次方程式 5x^2-7x+k=0 の2つの解が、sinΘ、cosΘであるとき、  定数k の値と sin^3Θ+cos^3Θの値を求めよ。 です。 「sinΘ+cosΘ=7/5」 「sinΘcosΘ=k/5」 を使って計算するらしいのですが、 この2つの式はどうやって求めたのでしょうか?

質問者が選んだベストアンサー

  • ベストアンサー
  • proto
  • ベストアンサー率47% (366/775)
回答No.1

解と係数の関係を使います。 5x^2-7x+k=0の2つの解がα,βであるとすると、   5x^2-7x+k = 5(x-α)(x-β) = 0 と因数分解出来るはずです。 展開して係数を比べると   5x^2-7x+k = 5x^2-5(α+β)x+5αβ より   -7 = -5(α+β)   k = 5αβ   α+β = 7/5   αβ = k/5 今回は設問で与えられているようにα,βがsinθ,cosθである場合を考えています。 だから   sinθ+cosθ = 7/5   sinθcosθ = k/5

rettoyossi
質問者

お礼

回答ありがとうございます!! 参考書の解答では、protoさんが説明してくださった解説がされていないのでわかりませんでした。 非常に分かりやすい説明ありがとうございました。

すると、全ての回答が全文表示されます。

関連するQ&A

  • 三角関数の問題のわからないところですpt2

    センターの三角関数の問題です。わからないところ以外の空欄は埋めています。 0≦θ<360°のときy=2sinθcosθ-2sinθ-2cosθ-3とする。 x=sinθ+cosθとすると、y=x^2 -2x - 4とかける。 x=√2sin(θ+45°)であるから、xの値の範囲は-√2≦x≦√2である。 したがって、yはθ=225°のとき最大値2(√2 - 1)をとり、最小値は-5である。 さらにkを定数とし、θの方程式2sinθcosθ-2sinθ-2cosθ-3=kが相異なる3個の解をもつときk=( )である 最後の空欄に関してなのですが、どのような順序で求めれば良いのかわかりません。sinθの値とθの解の個数の関係は理解しているつもりなのですが、今回はsinθではなく√2sin(θ+45°)となっているので混乱しています。よろしくお願いします。

  • 三角関数の問題です

    kを定数としてθの方程式cos2θ=ksinθ (-π/2≦θ≦π/2)を考える。 (1) この方程式が異なる2つの解を持つようなkの値の範囲を求めよ。 (2) kが(1)の範囲にあるとして、2つの解をθ=‪α‬,βとおく。sin‪α‬sinβの値を求めよ。 さらに、sin‪α‬+sinβ, cos(‪α‬+β)の値をkを用いて表せ。 この問題が分からないので、解法を教えていただきたいです!

  • 数IIの三角関数の問題

    数IIの三角関数の問題 次の3つの問題が分かりません。 解説をお願いします。 1、関数 y=cos2x-sinx(0≦x<2π) の最大値と最小値を求めよ。 また、与えられた実数aに対して、方程式 cos2x-sinx=a(0≦x<2π)の解の個数を求めよ。 2、45°≦θ≦135°のとき、関数f(θ)=3(sinθ)^2+4√3sinθcosθ-(cosθ)^2の最大値と最小値を求めよ。 3、aを定数とする。xについての方程式 (cosx)^2+2a(sinx)-a-1=0 の 0≦x≦2π における異なる実数解の個数を求めよ。

  • 三角関数について

    kは定数とする。θの方程式 2(√3sinθ-cosθ)+(√3sin2θ+cos2θ)=k(0≦θ≦π) について次の問いに答えよ。 (1)t=√3sinθ-cosθとおくとき、tをrsin(θ+α)の形(r>0、-π<α≦π)に変形せよ。また、tの取りうる値の範囲を求めよ。 (2)(1)のtについてt^2を計算して、 √3sin2θ+cos2θをtの式で表せ。 (3)θの方程式 2(√3sinθ-cosθ)+(√3sin2θ+cos2θ)=k(0≦θ≦π)の解の個数を分類しなさい。 この問題で (1) t=2sin(θ+2/3π) -1≦t≦2 (2)√3sin2θ+cos2θ=-t^2+2 と答えがでて、 (3)y=kとy=-t^2+2t+2が共有点について調べればよい。までわかったんですが、そこからθの個数について分類するまでが分かりません。  解答は k<-1,3<kのとき解θは0個 -1≦k<2のとき解θは1個 k=2,3のとき解θは2個 2<k<3のとき解θは3個 となっていますが、0個の分類はわかるんですが、1~3個までの分類の仕方が分からないので教えてください。

  • 二次関数(?)の問題がわかりません。

    二次関数(?)の問題がわかりません。 Xについての二次方程式 8X^-4X-a=0 (aは定数)の二つの解は sinθ、cosθである aの値を求めよ というものです。 解る方いらっしゃいましたら、よければヒントをいただけないでしょうか。 よろしくお願いします。

  • この三角関数の問題を教えてください。

    この三角関数の問題を教えてください。 問題は cos2x+2acosx=3a であるとき、0≦x<2πの範囲にある解の個数は、実数aの値によってどのように変わるか。 です。 僕はこの方程式をaについて解いたんですけど、その先がわかりません。 あなただったら、まず最初に何をしますか? どうやってこの問題を解いたらいいんでしょうか?

  • 三角関数の問題なのですが・・・

    三角関数の問題なのですが・・・ cosα+cosβ=1/2,sinα+sinβ=1/3のとき、 (1)cos(α-β)の値を求めよ。 (2)cos2x+cos2y=2cos(x+y)cos(x-y)  が成り立つことを示せ。 (3)cos(α+β)の値を求めよ。 加法定理を使うというのはわかるのですが、それをどう使えば値が出るのかわかりません。 解き方だけでも教えてください。お願いします!

  • 解が三角関数で表される2次方程式

    解が三角関数で表される2次方程式 aを正の定数とし、Θを0<=Θ<πを満たす角とする。このとき、2次方程式2x^2-2(2a-1)x-a=0の2つの解がsinΘ,cosΘであるという。a,sinΘcosΘであるという。 a,sinΘ,cosΘの値をそれぞれ求めよ。 与えられた2次方程式に対し、解と係数の関係からsinΘ+cosΘ=2a-1・・・・(1) sinΘcosΘ=-a/2・・・・・(2) (1)の両辺を2乗すると,sin^2Θ+cos^2Θ=1であるから1+2sinΘcosΘ=(2a-1)^2 これに(2)を代入して整理すると a(4a-3)=0 a>0であるからa=3/4 教えてほしいところ sinΘやcosΘは取り得る範囲が決まっていますよね??? よって、sinΘ+cosΘ=2a-1・・・・(1) sinΘcosΘ=-a/2とおいた時点でaの取り得る範囲が制限されるはずです。 よってa>0という条件に加えてさらにaの取り得る範囲は狭まるはずです。 ふつうの方程式のように解けば当然、そのようなことは考慮に入れていません。ですので、範囲の確認が必要なはず。 なのになぜ、a>0という条件しか確認しないんでしょうか???

  • 三角関数

    xの方程式 cos2x+2ksinx+k-4=0 (0≦x≦π)の異なる解の個数が2つであるためのkの満たす条件を求めよ。 まず、式変形をして 1-2sin^2 x+2ksinx+k-4=0 とし、定数分離できないので、 sinx=tとおいて-2t^2+2kt+k-3=0(0≦t≦1) とやろうと思いましたが、なんかよくわからなくなってしまいました。 回答よろしくお願いします。

  • 三角関数の問題がわかりません;

    三角関数の問題がわかりません; sinθ+cosθ=1/2のとき、次の式の値を求めよ。 (2)sin^3θ+cos^3θ という問題があるんですが、 答えが sinθ+cosθ(sin^2θーsinθcosθ+cosθ^2) =(sinθ+cosθ)(1-sinθcosθ) =1/2{1-(-3/8)} =1/2×11/8 =11/16 なんですが、上から3段目から4段目にかけての式の変え方がよくわかりません; 教えてほしいです; これより簡単に求める方法はないでしょうか? この答え以外の別解をおしえてほしいです。

このQ&Aのポイント
  • ぷららのメールの拒否設定が機能しない理由について
  • ぷららの迷惑メール拒否設定の問題とは
  • ぷららの迷惑メール対策の強度設定の問題点
回答を見る

専門家に質問してみよう