• ベストアンサー
  • すぐに回答を!

数IIIの積分法なんですが問題を見て置換積分と部分積分どちらを使って計算す

数IIIの積分法なんですが問題を見て置換積分と部分積分どちらを使って計算するか分からなくなったらとりあえず置換積分の方法でといてみてとけなかったら部分積分でといてみるという解き方でもいいでしょうか?ほとんどは置換積分法で解けますか?

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数953
  • ありがとう数0

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
  • sanori
  • ベストアンサー率48% (5664/11798)

前回質問から少し変わりましたけど、締め切らずに同様の質問をすると二重投稿と判定されることがあります。 もしも二重投稿と判定されたら、最初の質問が強制締め切りになります。 そのとき、ダメージを受けたり気分を害されたりするのは質問者でしょうか?回答者でしょうか? では本題。 >>>問題を見て置換積分と部分積分どちらを使って計算するか分からなくなったらとりあえず置換積分の方法でといてみてとけなかったら部分積分でといてみるという解き方でもいいでしょうか? あなたの自由です。 戦略としてどちらが優れていてどちらが劣っているかは、ケースバイケース。 式を見てどう判断するかのコツは、すでに前回で回答しています。 >>>ほとんどは置換積分法で解けますか? まさか。 置換積分を習ったばかりのタイミングでの小テストぐらいではないでしょうか。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 数IIIの積分法なんですが置換積分と部分積分法の公式のどっちを使って問題と

    数IIIの積分法なんですが置換積分と部分積分法の公式のどっちを使って問題とくかわかりません。問題のどの部分を見てどちらの公式を使うか教えて下さい。

  • 部分積分? 置換積分?

    部分積分? 置換積分? ∫(√(K^2-x^2)/x)dx(Kは実数)の積分ですが、やはり部分積分でしょうか? よろしければ、細かい手順を教えていただけるとありがたいです。

  • 部分積分、置換積分

    積分の問題がでたとき、部分積分で解くのか置換積分で解くのか区別ができません。何か区別の仕方とかあるのでしょうか。教えてください。

  • 置換積分、部分積分について

    見ていただきありがとうございます。 置換積分や、部分積分が苦手なんですが、簡単にできる公式みたいなものはないでしょうか? サイトを知っていれば、教えていただければありがたいです。 回答よろしくお願いします。

  • 置換、部分積分の証明です。

    数学IIIの置換積分、部分積分の証明の仕方が知りたいです。何かいい本をご存知の方いらっしゃいませんか?教科書にはまったく載っていないので。

  • 部分積分の問題

    すみません、下の積分の解き方を教えて頂きたいです。 ∫e^(x) cos(x) dx 部分積分で解くんだと思うのですが・・

  • 部分積分法について

    微分方程式の問題を解いているときに出てきた式 ∫(logt/t)×(1/t)dt を部分積分法で解くと (-1/t)logt+∫(1/t)(1/t)dt となるらしいのですが、自分で解くと ∫(logt/t)dt であることから解がlogtとなり、部分積分の公式に代入すると「+」よりも前の式が (1/t)logt というように「-」が付きません 以上の解き方は間違っているのでしょうか? 正しい解き方を教えてください

  • 数III積分

    数IIIの積分で部分積分と置換積分の使いわけができません!! 先生に聞いたら 慣れるしかないかな と言われたのですが、本当にそれしかないのでしょうか 使いわけるコツとかあれば教えてください。 お願いします!!

  • 部分積分の仕方

    ∫1/{(a-x)(b-x)}の仕方が分からず解説を見たら画像のように部分積分をしたら求まるよ。 と書いてありましたが理解できませんでした。 一応統計とかで使う超簡単な部分積分の解釈は出来ているのですが どうして部分積分からこのような式に変形できるのかがわかりません。 たとえばxcosxとかなら x(sinx)'としてxsinx-∫1・sinxとかで求めるのが部分積分ですよね。 なんで(b-a)が外に出てるのかそれすら理解できてません。お恥ずかしいですが、わかりやすくご指導お願い申し上げます。

  • 部分積分の直感的な理解

    部分積分の公式を、関数の積の微分の公式から導くのではなく、 部分積分の公式そのものから直接的にすぱっと理解する方法はないでしょうか? 物理の計算とかで、部分積分を使う場面がよくありますが、「部分積分すると」という表現に出くわすと、妙にはぐらかされた気分になるのです。