• ベストアンサー
  • 困ってます

部分積分? 置換積分?

部分積分? 置換積分? ∫(√(K^2-x^2)/x)dx(Kは実数)の積分ですが、やはり部分積分でしょうか? よろしければ、細かい手順を教えていただけるとありがたいです。

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数165
  • ありがとう数2

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1

I=∫(√(k^2-x^2)/x)dx  (kは実数) k>0としておきます。x=ksinθとおくと, I=k∫{(cosθ)^2/sinθ}dθ =k∫{(1-(sinθ)^2)/sinθ}dθ =k{∫(1/sinθ)dθ-∫sinθdθ} =klog|tan(θ/2)|+kcosθ+c =klog|tan((1/2)arcsin(x/k))|+√(K^2-x^2)+c

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとうございました!

関連するQ&A

  • 部分積分、置換積分

    積分の問題がでたとき、部分積分で解くのか置換積分で解くのか区別ができません。何か区別の仕方とかあるのでしょうか。教えてください。

  • 置換積分、部分積分について

    見ていただきありがとうございます。 置換積分や、部分積分が苦手なんですが、簡単にできる公式みたいなものはないでしょうか? サイトを知っていれば、教えていただければありがたいです。 回答よろしくお願いします。

  • 部分積分の疑問

    部分積分とは、部分的に積分するものですよね。全体を積分しなくてもいいんでしょうか。 { f( x )g( x ) } ′ = f ' ( x )g( x )+f( x ) g ' ( x ) の両辺を積分し,式を整理すると, ∫ { f( x )g( x ) } ' dx =∫ { f ' ( x )g( x )+f( x ) g ' ( x ) }dx f( x )g( x )=∫ f ' ( x )g( x ) dx+∫f( x ) g ' ( x )dx ∫f( x ) g ' ( x )dx =f( x )g( x )-∫f ' ( x )g( x ) dx となり,部分積分法の公式が求まる。 とあるのですが、f( x )g( x )を求めなくてはいけないのでは、と思ってしまうのですが。

  • 部分積分

    ∫x^2exp(-x^2/2)dxの部分積分についてです。 ∫x^2(-1/x・exp(-x^2/2))dxについて積分すればいいと思うのですが この積分により求められる第二項が2∫exp(-x^2/2)dxになってしまい回答と合いません、解答によると第二項は∫exp(-x^2/2)dxになるようなのですが何度やってもどこで間違っているのかがわかりません。 どなたか詳しく教えていただけないでしょうか。

  • 置換、部分積分の証明です。

    数学IIIの置換積分、部分積分の証明の仕方が知りたいです。何かいい本をご存知の方いらっしゃいませんか?教科書にはまったく載っていないので。

  • 部分積分の問題

    すみません、下の積分の解き方を教えて頂きたいです。 ∫e^(x) cos(x) dx 部分積分で解くんだと思うのですが・・

  • 部分積分がわかりません

    部分積分の問題で ∫log2x dx という問題がどうしても解けません。どのように解いていけば良いのでしょうか?

  • 数IIIの積分法なんですが問題を見て置換積分と部分積分どちらを使って計算す

    数IIIの積分法なんですが問題を見て置換積分と部分積分どちらを使って計算するか分からなくなったらとりあえず置換積分の方法でといてみてとけなかったら部分積分でといてみるという解き方でもいいでしょうか?ほとんどは置換積分法で解けますか?

  • 部分積分

    問題に ∫(-∞→∞)(x*e^(-(x^2)/2))dx このような積分があり 解説には ∫(-∞→∞)(x*e^(-(x^2)/2))dx =[-e^(-(x^2)/2)](-∞→∞)=0 というのがありました。 [-e^(-(x^2)/2)](-∞→∞)=0 この計算に問題はないのですが その前の ∫(-∞→∞)(x*e^(-(x^2)/2))dx =[-e^(-(x^2)/2)](-∞→∞) の意味がわかりません。 部分積分をしようとしているのはわかるのですが、どのように変形すればいいのかいまいち理解できないのですが、ご教授よろしくお願いします。

  • 部分積分.

     L ∫ {d/dx(E du/dx)+f}δudx=0  0 の部分積分をお願いします. ただし,  δu=0 u=0  E du/dx =T/A  (x=0) です.