• ベストアンサー
  • 暇なときにでも

全微分の式

2変数関数F(X,Y)の全微分dF(X,Y)について、dF(X,Y)=δF(X,Y)/δX・dX+δF(X,Y)/δY・dYが成立するのを証明していただけませんか? 講義だと、Xがaからh、Yがbからkに移動するときの平均変化率が、[F(X+a, Y+b)-F(X,Y)]/(h+k)^2みたいに書かれていて(すいません、書き間違えているかもしれません・・・うろ覚えなので)、どうして分子が(h+k)^2なのか分からないのです・・・。なお、上のdF(X,Y)=δF(X,Y)/δX・dX+δF(X,Y)/δY・dYは、微分の公式としてよく出てくる(XY)'=X'Y+Y'Xと同じ物ですか?

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数187
  • ありがとう数1

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.2

>[F(X+a, Y+b)-F(X,Y)]/(h+k)^2 >分子が√(h+k)^2 この場合、分母じゃないですかね?平均変化率のお話でしたら 「平均変化率」 = 「着目している量の変化」÷「着目している量に関連するものの変化」 という形(語弊があるかもしれませんが)です。関数f(x,y)に対して点(a,b)から(c,d)の「着目している量の変化」は 「着目している量の変化」=f(c,d)-f(a,b) となります。ところが「着目している量に関連するものの変化」の表現は少し考えなければなりません。というのも 「平均変化率」、「着目している量の変化」、「着目している量に関連するものの変化」は(この場合)ともに実数でなければなりません。ところが、着目している量に関連する量は実数ではありません。ベクトルとして記述すれば(x,y)や(a,b)(c,d)です。つまり {f(c,d)-f(a,b)}÷{(c,d)-(a,b)} という演算は平均変化率の計算では想定外のものになってします。このため(a,b)から(c,d)への変化量を距離で表します。距離は集合によって固有に定められるわけではなく、自分で定めても構いませんが、通常微分などを考える場合には √{(c-a)^2+(d-b)^2} という距離を用います。このような距離は「ユークリッド距離」と呼ばれます。距離を用いれば「平均変化率」は {f(c,d)-f(a,b)}÷√{(c-a)^2+(d-b)^2} として計算できます。 すなわち平均変化率の分母が√h^2+k^2とする理由は、(x,y)から(x+h,y+k)の変化を実数で表すためです。ただ、おそらく表現方法に関しては事前に教科書で整理がされていると思われます。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

丁寧にありがとうございました。曖昧な質問で答えにくかったかもしれませんが、とても参考になりました

その他の回答 (1)

  • 回答No.1

 自分は物理系の学生です。ですので参考までに見てください。どうも数学屋さんと物理屋さんでは書き方が違うところがあるようなので、混乱させてしまったらごめんなさい。  まず前半のご質問ですが、(回答しといてなんですが)あまり意図がくみとれません。おそらく 「F(x,y)が点(x,y)において全微分可能とする。すなわち F(x+h,y+k) - F(x,y) = Ah+Bk+o(Sqrt(h^2+k^2))なる実数ABが存在するとする。このときA=∂F/∂x,B=∂F/∂yとなることを示せ。」 か 「Fが全微分可能であることに対し、点(0,0)においてf(0,0)=∂F/∂x,g(0,0)=∂F/∂yとなるような連続関数があり、十分小さなh,kに対して F(x+h,y+k)=F(x,y) + f(h,k)・h + g(h,k)・k が成立することは必要十分条件である」 という問題ではないでしょうか?ちがっていたらごめんなさい。回答は問題を確認してから考えることをお勧めします。  後半の問題ですが、 >dF(X,Y)=δF(X,Y)/δX・dX+δF(X,Y)/δY・dYは、微分の公式としてよく出てくる(XY)'=X'Y+Y'Xと同じ物ですか? とありますが、自分は違うものと認識しています。共通点はあるとは思います。「同じ」がどういう意味合いを持っているかわかりませんが、 dF(X,Y)=δF(X,Y)/δX・dX+δF(X,Y)/δY・dY はFの微小変化をXとYの微小変換の定数倍で表現しようとしています。 (XY)'=X'Y+Y'X は、何で微分しているかわからないので仮にtで微分するとすると,Fの微小変化をtの微小変化の定数倍で表現しようとしたときの、tの係数のお話です。そもそも、前者が微小変化の表現で、後者が微小変化の表現に用いる係数のお話なので比較そのものができないですね。もし意図している内容が F=XYとして dF(X,Y)=δF(X,Y)/δX・dX+δF(X,Y)/δY・dY dF=d(XY) = (X'Y+XY')dt のお話でしたら、ともにFの微小変化を表現しているという点で同じものです。しかし、何で表現するかという点では全く違うものです。

共感・感謝の気持ちを伝えよう!

質問者からの補足

ありがとうございます。実は経済学の授業なのです。F(X,Y)の全微分dF(X,Y)が、dF(X,Y)=δF(X,Y)/δX・dX+δF(X,Y)/δY・dYということを示していたのですが、平均変化率の分子が√h^2+k^2になることが理解できなかったのです。 経済学という事で微分に関しては、かなり物理系と比べると、よくも悪くも適当みたいなのですね・・・。

関連するQ&A

  • ODE > 全微分

    全微分とは何かについて質問したいと思います。 読んでいたweb上の資料では以下の記載がありました。 ----- P(x,y)dx + Q(x,y)dy の微分形式が2変数f(x,y)の全微分になっているとき、すなわち df = ∂f(x,y)/∂x(x,y) dx + ∂f(x,y)/∂y dy = P(x,y)dx + Q(x,y)dy ----- 質問ですが、「全微分でない」というのは、ようするにf()という関数が別の変数(例えばz)に従属していて、fの微分をとった時にzの偏微分も入れないといけない、というようなことでしょうか?

  • 逆関数の微分と全微分の違い

    「y=1+x*c^yで定まる陰関数yについてdy/dxを求めよ」という問題の 解き方で、逆関数の微分と全微分のどちらで解けばよいのか分かりません。 私は、f(x,y)=1+x*c^y-y=0とおき、dy/dx=df(x,y)/dx*1/{df(x,y)/dy}で解き dy/dx=c^y/{x*c^y-1}となったのですが、 全微分の解き方をすると、c^y*dx+{x*c^y-1}*dy=0より dy/dx=-c^y/{x*c^y-1}となり、私が出した答えと符合が逆になってしまいます。 この場合どちらの解き方で解けばよいのでしょうか? 見づらいとは思いますが、どうかよろしくお願いいたします。

  • 偏微分

    偏微分を用いて、全微分をするとき 例えばx,y,zの時間に依存する変数からなる関数f(x,y,z)を時間で全微分する時、 df/dt=(df/dx)(dx/dt)+(df/dy)(dy/dt)+(df/dz)(dz/dt) となると思うのですが、 仮に、x,を時間だけでなく、もう一つ時間に依存する関数n(t)を与えるとします、 つまり X=x+n(t) f(x) => f(X)=f(x+n(t)) になるとします。 その時、時間の全微分はどうなるのでしょうか? f(x+n(t))はxとn(t)に依存しているので、f(x,n(t))と書いて f(x+n(t))=f(x,n(t)) df(x+n(t))/dt=(df(x,nt)/dt)=(df/dx)(dx/dt)+(df/dn)(dn/dt) としてもいいんでしょうか? 後どのような時、偏微分しても可能なのか教えて頂ければ幸いです。 どなたか分かる方よろしくお願いします。

  • 陰関数についての計算

    陰関数:f(x,y) = x^2 + xy + y^2 - 36 = 0 があって、 導関数:dy/dxを求める問題なのですが、 途中でつまづいてしまっているので質問させていただきます。 計算途中で2変数関数 の全微分df (x, y)を求め、それぞれdxとdyについてまとめることが小問としてあるのですが、dxとdyについてまとめろとはどういう計算をすれば求まるのでしょうか? 全微分はdf = (2x+y)dx + (x+2y)dyとなりここから どのように展開すればdxとdyについてまとめたことになるのでしょうか? 書籍では、全微分を求めた後、df=0として全微分を展開していき、 dy/dxを求めていて、途中でdx、dyについてまとめる過程は出てきていないので、書籍を参考にできずOKwaveで質問させていただきます。 よろしくお願いします。

  • 全微分に関して教えてください。

    全微分に関して教えてください。 教科書には、 まず、1階微分方程式:dy/dx=-p(x,y)/q(x,y)が定義され、 p(x,y)dx+q(x,y)dy=0・・・(1) と変形した形が書かれています。 そして、完全形の条件が書かれています。 そこで、(1)が完全形であるための必要十分条件は、 ∂p(x,y)/∂y=∂q(x,y)/∂xと書かれ、 証明が始まるのですが、 [必要条件] pdx+qdyが関数uの全微分であるならば、du=∂u/∂x dx+∂u/∂y dy=pdx+qdy よって、p=∂u/∂x、q=∂u/∂yであり、 ∂p/∂y=∂^2u/∂y∂x=∂^2u∂x∂y=∂q/∂x [十分条件] ∂p/∂y=∂q/∂xとしたとき、 F(x,y)=∫p(x,y)dx・・・(2)とおくと、 p(x,y)=∂F/∂x, ∂q/∂x=∂p/∂y=∂^2F/∂x∂y・・・(3) であるから、∂/∂x(q-∂F/∂y)=0・・・(4) すなわち、q-∂F/∂y・・・(5) はyだけの関数である。 q-∂F/∂y=G(y)・・・(6) よって、 u(x,y)≡∫q(x,y)dy=F(x,y)+∫G(y)dx・・・(7) とおけば、 ∂u/∂y=q(x,y)、∂u/∂x=∂F/∂x=p(x,y) であるから、 du=∂u/∂x dx+∂u/∂y dy=p(x,y)dx+q(x,y)dy・・・(8) となり、証明終了となっております。 必要条件に関しては分かるのですが、 十分条件に関しての証明がよく分かりません。 I、(2)とおく理由 II、(4)となる理由 III、(5)がyだけの関数という意味 IV、その結果、(7)となった過程 上記のI~IVに関して教えていただけませんでしょうか 長々と申し訳ありません。 どうしても理解したいので、 どなたか、教えていただけませんか。 宜しくお願いいたします。 ※数式に関しては、何度か確認したのですが、 間違っていたらご指摘ください。

  • 簡単な全微分について。

    Z=F(X,Y)=αlnX+βlnY を全微分した答えはどうなりますか? ノートに書いてある回答は、 d=(α/X+βlnY)dX+(αlnX+β/Y)dYですが、 私は d=(α/X)dX+(β/Y)dY かな、と思ったのですが。 大文字小文字の使い方がおかしくてすみません:

  • 全微分について

    全微分公式は dz=∂z/∂y・dy+∂z/∂x・dx ですが、 全微分可能性は、ε(x,y)/(√dx^2+dy^2)→0 ですよね。 全微分可能性は、ちょうど接平面の対角線の高さとΔzの差を、ΔxとΔyを一辺とする長方形の対角線である(√dx^2+dy^2)で割って極限を取るという形になっています。 そうならば、全微分も、Δz/(√Δx^2+Δy^2)であるべきですよね。それが、なぜ上式になるのかわかりません。 僕にはそれぞれの成分が、接平面のxの変化によるzの増分とy方向の変化によるzの増分を足すと、zの増分になるとしか意味しておらず、 微分の微分係数を求めるつまり、平均変化率の極限値になっていないと思うのですが・・・ 確か、dy/dx=接戦の傾きで、上式では単に成り立つよねとしか言えていないような・・・・

  • 多変数関数f(x,y)の多変数関数g(x,y)による微分∂f/∂gを計

    多変数関数f(x,y)の多変数関数g(x,y)による微分∂f/∂gを計算するには? xとyに関する多変数関数f(x,y)と、g(x,y)が与えられたとき、微分∂f/∂gを計算するにはどうしたらよいでしょうか?(そもそも偏微分なのだろうか?) 具体例で考えます。 f(x,y) = (x+2y)^2 g(x,y) = x+2y である場合。当然∂f/∂g = 2 gです。このような場合は問題ありませんが、 f(x,y) = x + 3y g(x,y) = x + 2y のような場合はどのように考えたらよいのでしょうか? 全微分の関係を使って考えてみました。 df(x,y) = (∂f/∂x) dx + (∂f/∂y) dy + O(dx,dy) = dx + 3 dy + O(dx,dy) dg(x,y) = (∂g/∂x) dx + (∂g/∂y) dy + O(dx,dy) = dx + 2 dy + O(dx,dy) ∂f/∂g = limit_{dx→0,dy→0} df/dg を考えれば良いのではないかと。 どの方向から極限をとっても極限値が変わらないと仮定して、 つまりdx = dyとして、極限を考えると。 ∂f/∂g = 4/3 とても正しいとは思えないのですが、他にどう考えればよいのかわからず悩んでいます。 そもそも、微分が存在しないと言うことなのでしょうか? 質問は以下の2点です。 (1)この様な場合、どのように考えていけばいいのでしょうか? (2)この様な微分に関して、数学的に何か名前があるのでしょうか?分野名など。 以上 よろしくお願いします。

  • 全微分について

    いつもお世話になっております. この度は次の2つの問題に関して質問させていただきます. 問1 次の連立方程式の全微分をとり,dy/dxを求めなさい. zf(x)+(1-z)g(z)=0 z=yx 問2 方程式ye^(2x)=10について-dy/dxとd/dx(-dy/dx)を求めなさい. 問1に関しては,f(x)とg(z)が与えられていない状況でどう考えて良いのかが全くわかりません.yxf(x)+(1-yx)g(z)=0として全微分すればよいのでしょうか?もしそうだとするならば計算が煩雑になるので,他によい解き方はありませんでしょうか? 問2は全微分を行うと,2ye^(2x)dx+e^(2x)dy=0となり,-dy/dx=2yと求められました.しかし,与式をはじめにy=10e^(-2x)と変形してから微分すると-dy/dx=20e^(-2x)となりました.どうして同じ-dy/dxであるにも関わらず答えが違うのでしょうか? 以上2点,よろしくお願い致します.

  • 二階の全微分について

    物理でxyの座標を極座標に変換し加速度を計算するなかで、2階の全微分に困っています。あまり、微分積分は慣れていないので、丁寧に教えていただけると助かります。 http://okwave.jp/qa/q2707943.html でも、同じような質問があります。 一階の全微分はわかりますが、2階の全微分で項が増えるのがわかりません。 具体的には、 Z=f(X,Y), X=g(t) Y=h(t)で、 dZ/dt=(∂Z/∂x)dx/dt+(∂Z/∂y)dy/dt まではよくわかり、これを二階にするときはまず、第1項目(∂Z/∂x)dx/dtが {∂/∂x(∂Z/∂x)dx/dt}dx/dt+{∂/∂y(∂Z/∂x)dx/dt}dy/dt となるだと思うのですが、(∂Z/∂x)d/dt(dx/dt)という項も加わるようです。詳しくその考え方を教えていただけますでしょうか?