• ベストアンサー
  • 困ってます

陰関数についての計算

陰関数:f(x,y) = x^2 + xy + y^2 - 36 = 0 があって、 導関数:dy/dxを求める問題なのですが、 途中でつまづいてしまっているので質問させていただきます。 計算途中で2変数関数 の全微分df (x, y)を求め、それぞれdxとdyについてまとめることが小問としてあるのですが、dxとdyについてまとめろとはどういう計算をすれば求まるのでしょうか? 全微分はdf = (2x+y)dx + (x+2y)dyとなりここから どのように展開すればdxとdyについてまとめたことになるのでしょうか? 書籍では、全微分を求めた後、df=0として全微分を展開していき、 dy/dxを求めていて、途中でdx、dyについてまとめる過程は出てきていないので、書籍を参考にできずOKwaveで質問させていただきます。 よろしくお願いします。

共感・応援の気持ちを伝えよう!

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.2

 f(x,y)はx、yによらず常に0ですので、その全微分dfは常に   df=0 です。  そこで、dx、dyについてまとめられた式をdf=0の式に代入すれば、dy/dxが求められます。   (2x+y)dx + (x+2y)dy=0  ⇔(x+2y)dy=-(2x+y)dx  ∴dy/dx=-(2x+y)/(x+2y)  また、質問者さんがお持ちの書籍に書かれた方法でも全微分を経ていましたら、途中を省いているだけで同じことをやっておられると思います。  なお、別の解法としては、fをいきなりxで微分する方法があります。ここでも常にf=0ですから、df/dx=0を利用します。   df/dx=2x+x(dy/dx)+y+2y(dy/dx)=0   (x+2y)(dy/dx)+2x+y=0  ∴dy/dx=-(2x+y)/(x+2y)

共感・感謝の気持ちを伝えよう!

質問者からのお礼

回答ありがとうございました。 勉強になります。 とても助かりました。

その他の回答 (1)

  • 回答No.1
  • info22
  • ベストアンサー率55% (2225/4034)

> 全微分はdf = (2x+y)dx + (x+2y)dyとなりここから 「=0」を忘れていませんか? df = (2x+y)dx + (x+2y)dy=0 から (x+2y)dy=-(2x+y)dx dy/dx=-(2x+y)/(x+2y) とdyとdxの比を求めるだけで良いですね。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

回答ありがとうございました。 しっかり理解でき、勉強になりました。 ありがとうございました。

関連するQ&A

  • 陰関数の微分法

    陰関数の微分法 方程式(x^2/4)ー(y^2/9)=1で定められるxの関数yについてdy/dx、d^2y/dx^2をxとyで表せ。 (解答) (1)(x^2/4)ー(y^2/9)=1の両辺をxについて微分すると、 2x/4-2y/9×(dy/dx)=0 y≠0のときdy/dx=9x/4y (2)d^2y/dx^2=9/4×{(1×y-xy´)/y^2} (2)についてxを定数として扱ってはならないのはyはxの関数だからと書かれているのですが、 このようにyを定数として扱ってはならないものの例がほかにあれば教えてください。 初心者なので他の例(陰関数の微分法以外の例)を知りません。

  • 陰関数の第2次導関数の証明方法

    陰関数の第2次導関数の証明のやりかたなのですが、 dy/dx=-f(x)/f(y) ですので、 d^2y/dx^2 は d(dx/dy)/dx = d(-f(x)/f(y))/dx となり、後は f(x)/f(y)を微分するだけなのはわかるのですが、 一般的な微分公式にあてはめた場合、 -f(xx)f(y)×f(yx)f(x)/f(y)^2 と成るはずなのですが、 答えは d^2y/dx^2=-( f(xx)f(y)^2-2f(xy)f(x)f(y)+f(yy)f(x)^2 )/ f(y)^3 となり、途中の計算課程が分かりません。 私は何の認識を誤っているのでしょうか? 詳しく教えてください。よろしくお願いします。

  • 陰関数の微分

    e^xy+y^2=ln x(陰関数の形でかかれた)の導関数dy/dxを求めるのはどうすればよいでしょうか。 また、f(x,y)=xy(1-x-y)のx、yは0以上の時のmax, minはどうなりますか。一応、計算したんですが、自信がないので、質問しました。

  • 陰関数そのものを使った積分の計算法

    いろいろな曲線の表示において、微分や積分の計算法を整理してみました。 x^2+y^2=4上の点(x,y)=(1,√3)でのdy/dxの値の求め方。 陽関数。y=√(4-x^2)よりdy/dx=-x/√(4-x^2)。x=1のとき、dy/dx=-1/√3。 媒介変数。x=2cos(θ),y=2sin(θ)とすると、dy/dx=dy/dθ÷dx/dθ=-cos(θ)/sin(θ)。 θ=π/3のとき、dy/dx=-1/√3。 逆関数。x=√(4-y^2)よりdy/dx=1÷dx/dy=-√(4-y^2)/y。y=√3のとき、dy/dx=-1/√3。 極座標に変数変換。(x,y)→(r,θ) (ただし、x=rcos(θ),y=rsin(θ))とすると、(1,√3)→(2,π/3)。 x^2+y^2=4→r=2。dx=cos(θ)dr-rsin(θ)dθ、dy=sin(θ)dr+rcos(θ)dθ。dr/dθ=0。 よって、dy/dx=-cos(θ)/sin(θ)。θ=π/3のとき、dy/dx=-1/√3。 陰関数。2x+2y(dy/dx)=0より、dy/dx=-x/y=1/√3。 y≧0,x^2+y^2≦4の面積の求め方。 陽関数。境界はy=√(4-x^2)より∫[-2,2]ydx=∫[-2,2]√(4-x^2)dx=[(1/2)√(4-x^2)+2arcsin(x/2)] [-2,2] = 2π 媒介変数。境界をx=2cos(θ),y=2sin(θ)とすると、∫[-2,2]ydx=∫[π,0]2sin(θ){-2sin(θ)}dθ = 2π 逆関数。境界はx=√(4-y^2)より∫[-2,2]ydx=2∫[0,1]y(dx/dy)dy=2∫[2,0]y(-y/√(4-y^2))dy=2π 極座標に変数変換。(x,y)→(r,θ)(ただし、x=rcos(θ),y=rsin(θ))とすると、 [y≧0,x^2+y^2≦4]→[0≦r≦1,0≦θ≦π]、ヤコビアンはr。よって、 ∫[y≧0,x^2+y^2≦4]dxdy=∫[0≦r≦2,0≦θ≦π]rdrdθ=2π 以上のように計算法を比べてみると、陰関数そのものを使った積分の計算法を僕は知りません。 数学の理論はボタンをかけるように、パラレルな理論があると信じているのですが、 一方を知らないので気になります。 陰関数そのものを使った積分の計算法があれば教えていただけますようお願いいたします。

  • 陰関数媒介変数表示の微分、媒介変数表示陰関数の微分

    なにか微分可能な平面曲線があるとし、その傾きが知りたいとします。 陽関数y=f(x)の微分は、 dy/dx=f'(x)です。 媒介変数表示x=f(t),y=g(t) の微分は、 dy/dx={df(t)/dt}/{dg(t)/dt}です。 陰関数f(x,y)=0の微分は、 dy/dx=-{∂f(x,y)/∂x}/{∂f(x,y)/∂y}です。 陰関数の中に媒介変数があるh(x,y)=h(f(t),g(t))=0 の微分は、どうなるのでしょうか? 媒介変数表示が陰関数になっているf(x,t)=0,g(y,t)=0 の微分は、どうなるのでしょうか?

  • 逆関数の微分と全微分の違い

    「y=1+x*c^yで定まる陰関数yについてdy/dxを求めよ」という問題の 解き方で、逆関数の微分と全微分のどちらで解けばよいのか分かりません。 私は、f(x,y)=1+x*c^y-y=0とおき、dy/dx=df(x,y)/dx*1/{df(x,y)/dy}で解き dy/dx=c^y/{x*c^y-1}となったのですが、 全微分の解き方をすると、c^y*dx+{x*c^y-1}*dy=0より dy/dx=-c^y/{x*c^y-1}となり、私が出した答えと符合が逆になってしまいます。 この場合どちらの解き方で解けばよいのでしょうか? 見づらいとは思いますが、どうかよろしくお願いいたします。

  • 陰関数についてdy/dxの求め方を教えてくだい

    下の式に定める陰関数についてdy/dxの値の求め方を教えてください よろしくお願いいたいします x^3+y^3ー3xy=0

  • 陰関数と偏微分

    1)z^x=y^zで表される陰関数zx,zyを求める上でどうすればいいのか分かりません。 2)以前x^2+y^2+z^2+2x+2y+2z=0で表される陰関数のzxを求めなさいという問題での疑問を出したところz^2をxで偏微分したときに2・z・zx 、y^2をxで偏微分すると0になると返ってきたのですが、どうして0になるのでしょうか? 2y・yxとなるならわかるのですが。またz=の形にしてからという答えもあったのですが、それは(z+1)^2に平方完成してから√にしてやれって事でしょうか?答えがぜんぜんちがったものですから。 3)x^2+y^2+z^2=a^2,x^2+y^2=2ax で陰関数のdy/dx,dz/dxをもとめさせるもんだいがあったのですが、dy/dxをもとめるうえで、fyとfxをもとめたわけなんですが、後の式を使えばでますが、前の式は何に使うのでしょう。dz/dxをもとめるうえで、fz、fxを求めようとしたのですが、fz=2z fy=2yとやってはいけないのですか?しかも答えにはaがでてきました。

  • 陰関数の微分について

    陰関数の微分についてよくわからないところがあるので質問します。 R^2の開集合U上で陰関数f(x,y)=0 (f:R^2→RでfはU上C^1級)が与えられているとする。 両辺の微分を取ると、(∂f/∂x)dx+(∂f/∂y)dy=0となる。という記述がありますが、いまいち理解できません。なぜなら、f(x,y)はU上定義されている関数で微分を取ることはわかりますが、右辺の0はここでは U上恒等的に0、すなわち関数として0という意味ではないので, 右辺の微分を取って等式とするのは変だと思ったからです。 ここを納得するにはどう考えればよいのでしょうか。

  • 逆関数の微分 問題

    逆関数の微分 問題 1.x=(y^2-1)/(y^2+1)のとき、dy/dxを求めよ。  dy/dx=1/(dx/dy)である。商の微分より、  dx/dy=(4y)/(y^2+1)^2  dy/dx=(y^2+1)^2/(4y) 2.y=e^xyのとき、dy/dxを求めよ。  logy=xy→x=logy/y  dy/dx=1/(dx/dy)である。商の微分より、  dx/dy=(1-logy)/y^2  dy/dx=y^2/(1-logy) 答えは合っているでしょうか? ご回答よろしくお願い致します。