• ベストアンサー
  • 暇なときにでも

ODE > 全微分

全微分とは何かについて質問したいと思います。 読んでいたweb上の資料では以下の記載がありました。 ----- P(x,y)dx + Q(x,y)dy の微分形式が2変数f(x,y)の全微分になっているとき、すなわち df = ∂f(x,y)/∂x(x,y) dx + ∂f(x,y)/∂y dy = P(x,y)dx + Q(x,y)dy ----- 質問ですが、「全微分でない」というのは、ようするにf()という関数が別の変数(例えばz)に従属していて、fの微分をとった時にzの偏微分も入れないといけない、というようなことでしょうか?

共感・応援の気持ちを伝えよう!

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1

別の変数 z は関係ありません. 質問に書かれているように,関数 f(x,y) があって, x → x+dx,y → y+dy と変化したときに f の変化 df は (1) df = {∂f(x,y)/∂x} dx + {∂f(x,y)/∂y} dy です(書き損ないを修正して,見やすくしました). もちろん {∂f(x,y)/∂x} も {∂f(x,y)/∂y} も x,y の関数です. では,逆に勝手な P(x,y) と Q(x,y) を持ってきて (2) P(x,y) dx + Q(x,y) dy を作ったときに,これはある関数 f(x,y) の x → x+dx,y → y+dy に対する変化とみなせるかどうか? 見なせるとき,(2)は「全微分になっている」といいます. 見なせないときには「全微分ではない」といいます. 一般に2変数関数の偏微分に対して (3) (∂/∂y) {∂f(x,y)/∂x} = (∂/∂x) {∂f(x,y)/∂y} が成り立ちます(本当は連続性が必要ですが,そこは触れない). つまり,偏微分は順序を交換しても同じ結果になる. したがって,(1)(2)を比べてみると,(2)が全微分であるためには (4) ∂P(x,y)/∂y = ∂Q(x,y)/∂x になっていないといけません. つまり,勝手な P(x,y) と Q(x,y) を持ってきて(2)を作っても 全微分になっているとは限らないわけです (たいていダメでしょう). この話は,複素関数論で正則関数に対するコーシー・リーマンの関係式, あるいは力学で力がポテンシャルを持つ条件, と深い関係があります(というか,ほとんど同じこと).

共感・感謝の気持ちを伝えよう!

質問者からのお礼

詳細な回答ありがとうございます。 (4)式が必要である理由というのがよくわかりました。 また、これはコーシー・リーマンの関係式と同じである、というのはなかなか気づいていませんでした。 色々勉強になりました。 ありがとうございます。

関連するQ&A

  • 偏微分

    偏微分を用いて、全微分をするとき 例えばx,y,zの時間に依存する変数からなる関数f(x,y,z)を時間で全微分する時、 df/dt=(df/dx)(dx/dt)+(df/dy)(dy/dt)+(df/dz)(dz/dt) となると思うのですが、 仮に、x,を時間だけでなく、もう一つ時間に依存する関数n(t)を与えるとします、 つまり X=x+n(t) f(x) => f(X)=f(x+n(t)) になるとします。 その時、時間の全微分はどうなるのでしょうか? f(x+n(t))はxとn(t)に依存しているので、f(x,n(t))と書いて f(x+n(t))=f(x,n(t)) df(x+n(t))/dt=(df(x,nt)/dt)=(df/dx)(dx/dt)+(df/dn)(dn/dt) としてもいいんでしょうか? 後どのような時、偏微分しても可能なのか教えて頂ければ幸いです。 どなたか分かる方よろしくお願いします。

  • 逆関数の微分と全微分の違い

    「y=1+x*c^yで定まる陰関数yについてdy/dxを求めよ」という問題の 解き方で、逆関数の微分と全微分のどちらで解けばよいのか分かりません。 私は、f(x,y)=1+x*c^y-y=0とおき、dy/dx=df(x,y)/dx*1/{df(x,y)/dy}で解き dy/dx=c^y/{x*c^y-1}となったのですが、 全微分の解き方をすると、c^y*dx+{x*c^y-1}*dy=0より dy/dx=-c^y/{x*c^y-1}となり、私が出した答えと符合が逆になってしまいます。 この場合どちらの解き方で解けばよいのでしょうか? 見づらいとは思いますが、どうかよろしくお願いいたします。

  • 偏微分、合成関数の微分法

    数学を進めているのですが、偏微分が絡んだ合成関数の微分法がわかりません。 大学数学のテキストは高校のと比べて、読み進めずらいです。助けてください。 (質問本文) 「」は私の理解の仕方と思ってください。まず、公式の理解から私の偏微分の考え方は正しいでしょうか? (1)関数z=f(x、y)にさらにx=x(t)、y=y(t)という関係がある時、「実質1変数で」、dz/dt=(∂z/∂x)×(dx/dt)+(∂z/∂x)×(dx/dt)(「それぞれxとyでzを偏微分して、x、yを今度は1変数なので、微分する」) (2)関数z=f(x、y)にさらにx=x(u,v)、y=y(u,v)という関係がある時,今度は変数が2つuとvがあるので、「どちらか片方で微分して」、∂z/∂u=(∂z/∂x)(∂x/∂u)+(∂z/∂y)(∂z/∂u)(「それぞれ片方の変数x、yでzを微分して(偏微分)さらに、そのx、yを関係式があるuで片方を選んで、uで偏微分する」) 次に、教科書の文章で、f(x、y)=0によって、xの陰関数y=f(x)が定められているとき、y‘=-Fx/Fyをxで微分すると、(dFx/dx)=Fxx+Fyy×dy/dx,dFx/dx=Fyx+Fyy×dy/dx(★)とあるのですが、★の微分はどのように考えて実行しているのでしょうか?(上の教科書の公式では全く上手くいきません)

  • 陰関数についての計算

    陰関数:f(x,y) = x^2 + xy + y^2 - 36 = 0 があって、 導関数:dy/dxを求める問題なのですが、 途中でつまづいてしまっているので質問させていただきます。 計算途中で2変数関数 の全微分df (x, y)を求め、それぞれdxとdyについてまとめることが小問としてあるのですが、dxとdyについてまとめろとはどういう計算をすれば求まるのでしょうか? 全微分はdf = (2x+y)dx + (x+2y)dyとなりここから どのように展開すればdxとdyについてまとめたことになるのでしょうか? 書籍では、全微分を求めた後、df=0として全微分を展開していき、 dy/dxを求めていて、途中でdx、dyについてまとめる過程は出てきていないので、書籍を参考にできずOKwaveで質問させていただきます。 よろしくお願いします。

  • 多変数関数f(x,y)の多変数関数g(x,y)による微分∂f/∂gを計

    多変数関数f(x,y)の多変数関数g(x,y)による微分∂f/∂gを計算するには? xとyに関する多変数関数f(x,y)と、g(x,y)が与えられたとき、微分∂f/∂gを計算するにはどうしたらよいでしょうか?(そもそも偏微分なのだろうか?) 具体例で考えます。 f(x,y) = (x+2y)^2 g(x,y) = x+2y である場合。当然∂f/∂g = 2 gです。このような場合は問題ありませんが、 f(x,y) = x + 3y g(x,y) = x + 2y のような場合はどのように考えたらよいのでしょうか? 全微分の関係を使って考えてみました。 df(x,y) = (∂f/∂x) dx + (∂f/∂y) dy + O(dx,dy) = dx + 3 dy + O(dx,dy) dg(x,y) = (∂g/∂x) dx + (∂g/∂y) dy + O(dx,dy) = dx + 2 dy + O(dx,dy) ∂f/∂g = limit_{dx→0,dy→0} df/dg を考えれば良いのではないかと。 どの方向から極限をとっても極限値が変わらないと仮定して、 つまりdx = dyとして、極限を考えると。 ∂f/∂g = 4/3 とても正しいとは思えないのですが、他にどう考えればよいのかわからず悩んでいます。 そもそも、微分が存在しないと言うことなのでしょうか? 質問は以下の2点です。 (1)この様な場合、どのように考えていけばいいのでしょうか? (2)この様な微分に関して、数学的に何か名前があるのでしょうか?分野名など。 以上 よろしくお願いします。

  • 陰関数媒介変数表示の微分、媒介変数表示陰関数の微分

    なにか微分可能な平面曲線があるとし、その傾きが知りたいとします。 陽関数y=f(x)の微分は、 dy/dx=f'(x)です。 媒介変数表示x=f(t),y=g(t) の微分は、 dy/dx={df(t)/dt}/{dg(t)/dt}です。 陰関数f(x,y)=0の微分は、 dy/dx=-{∂f(x,y)/∂x}/{∂f(x,y)/∂y}です。 陰関数の中に媒介変数があるh(x,y)=h(f(t),g(t))=0 の微分は、どうなるのでしょうか? 媒介変数表示が陰関数になっているf(x,t)=0,g(y,t)=0 の微分は、どうなるのでしょうか?

  • 全微分に関して教えてください。

    全微分に関して教えてください。 教科書には、 まず、1階微分方程式:dy/dx=-p(x,y)/q(x,y)が定義され、 p(x,y)dx+q(x,y)dy=0・・・(1) と変形した形が書かれています。 そして、完全形の条件が書かれています。 そこで、(1)が完全形であるための必要十分条件は、 ∂p(x,y)/∂y=∂q(x,y)/∂xと書かれ、 証明が始まるのですが、 [必要条件] pdx+qdyが関数uの全微分であるならば、du=∂u/∂x dx+∂u/∂y dy=pdx+qdy よって、p=∂u/∂x、q=∂u/∂yであり、 ∂p/∂y=∂^2u/∂y∂x=∂^2u∂x∂y=∂q/∂x [十分条件] ∂p/∂y=∂q/∂xとしたとき、 F(x,y)=∫p(x,y)dx・・・(2)とおくと、 p(x,y)=∂F/∂x, ∂q/∂x=∂p/∂y=∂^2F/∂x∂y・・・(3) であるから、∂/∂x(q-∂F/∂y)=0・・・(4) すなわち、q-∂F/∂y・・・(5) はyだけの関数である。 q-∂F/∂y=G(y)・・・(6) よって、 u(x,y)≡∫q(x,y)dy=F(x,y)+∫G(y)dx・・・(7) とおけば、 ∂u/∂y=q(x,y)、∂u/∂x=∂F/∂x=p(x,y) であるから、 du=∂u/∂x dx+∂u/∂y dy=p(x,y)dx+q(x,y)dy・・・(8) となり、証明終了となっております。 必要条件に関しては分かるのですが、 十分条件に関しての証明がよく分かりません。 I、(2)とおく理由 II、(4)となる理由 III、(5)がyだけの関数という意味 IV、その結果、(7)となった過程 上記のI~IVに関して教えていただけませんでしょうか 長々と申し訳ありません。 どうしても理解したいので、 どなたか、教えていただけませんか。 宜しくお願いいたします。 ※数式に関しては、何度か確認したのですが、 間違っていたらご指摘ください。

  • 微分について分からないことがあります

    微分法について現在学んでいるのですが、分からない記述があり困っております。具体的には、以下の文を読んでいるときに、ふと「微分」という言葉を辞書で調べてみたときのことで、その辞書の解説の意味が分からず困っております。(読んでいた文ではなく、辞書の解説が分からないということです) (読んでいた文) 関数 f (x) において、一般の点(x , y)においては、接線の傾きが f ' (x) であるから、次のようになります。                  dy = f ' (x)dx ここで、dx と dy を、「微分」といいます。 f ' (x) は微分 dx の係数なので、「微分係数」とも呼ばれます。 (辞書の解説) 関数 y = f (x)が微分可能であれば、Δy = f (x + Δx)とおくと lim_Δx→0 Δx/Δy = f ' (x) であるから、次のように書くことが出来る。 Δy = f ' (x)Δx + ε, lim_Δx→0 ε/Δx = 0 したがって、Δy = f ' (x)Δx がこの関数の1次式としての近似を表わすわけで、このΔx,Δyを変数であらわしてdy = f ' (x)dx と書き、この正比例関数 df : dx →f ' (x)dxを f の微分という。また、変数 dx や dy のことを微分ということもある。f ' (x) が微分係数と呼ばれるのは、 f ' (x) が y の微分 dy における x の微分 dx の係数になっているからである。 この辞書の解説の、εが出てきたあたり、具体的には 「~次のように書くことが出来る。 Δy = f ' (x)Δx + ε, lim_Δx→0 ε/Δx = 0 したがって、Δy = f ' (x)Δx がこの関数の1次式としての近似を表わすわけで~」 の部分が全然分からなかったのですが、その前の記述に関しても不安なので、どうせなら全て解説していただけないかなと思っております。難しい日本語でもいいので、できるだけ論理の飛躍はしないで解説していただけないのでしょうか?「何を解説すればいいんだ!」と言われそうですが、もし自分が高校卒業程度のレベルの人に、この辞書の記述を優しく解説するとしたらこうなるだろうな、みたいな感じでお願いできないでしょうか・・・。重点的には先の部分をよろしくお願いします。 ちなみに私は大学1年生です。 回答よろしくお願いします。

  • 数(3)の微分についてです。

    媒介変数で表された関数の微分法についてなのですが、教科書に下のような説明が書いてあります。 x=f(t),y=g(t)と表され、x,yがtについて微分可能のとき 合成関数の微分法により dy/dx=dy/dt*dt/dx ・・・(1) したがって dy/dx=dy/dt*1/dx/dy=dy/dt/dx/dt=g`(t)/f`(t) (1)の合成関数の微分っていうのはyがtで微分できて、tがxで微分できるときに使えるんですよね?てことはyがtの関数で、tはxの関数で無ければならないと思うのですが、最初に与えられているのはyはtの関数、xはtの関数ってことだけで、tはxの関数であるとは限らないと思うのです。なので上の証明はx=f(t)の逆関数が存在する時しか成り立たないのではないのでしょうか?何故いつも成り立つのかがわかりません。 初歩的な質問ですみませんm(__)m

  • 全微分の式

    2変数関数F(X,Y)の全微分dF(X,Y)について、dF(X,Y)=δF(X,Y)/δX・dX+δF(X,Y)/δY・dYが成立するのを証明していただけませんか? 講義だと、Xがaからh、Yがbからkに移動するときの平均変化率が、[F(X+a, Y+b)-F(X,Y)]/(h+k)^2みたいに書かれていて(すいません、書き間違えているかもしれません・・・うろ覚えなので)、どうして分子が(h+k)^2なのか分からないのです・・・。なお、上のdF(X,Y)=δF(X,Y)/δX・dX+δF(X,Y)/δY・dYは、微分の公式としてよく出てくる(XY)'=X'Y+Y'Xと同じ物ですか?