• ベストアンサー
  • すぐに回答を!

途中まで解いてみたんですが・・・

xに関する方程式x^3-(2a-1)x^2-2(a-1)x+2=0が異なる3つの実数解をもつ時、実数aの値の範囲をもとめよ。 という問題で、 x^3-2(a-1)x^2-2(a-1)x+2=0 (x+1)(x^2-2ax+2)=0 これが異なる3つの実数解をもつには、次の〔1〕または〔2〕が成り立てばよい。 〔1〕x^2-2ax+2=0が異なる2つの実数解をもつとき。 判別式をDとするとD>0 D/4=a^2-2>0 (a+√2)(a-√2)>0 a<-√2、√2<a 〔2〕x^2-2ax+2=0の1つの解がー1で他方の解がー1でないとき? ここまで自分で解いてみたんですけど、合ってるかどうかも分からないし、続きも分かりません。 授業であたってるんです。 添削と続きの回答をおしえてください。ちなみに答えはa<-3/2、-3/2<a<-√2、√2<aです。お願いします。

共感・応援の気持ちを伝えよう!

  • 回答数3
  • 閲覧数53
  • ありがとう数1

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.3
  • ryn
  • ベストアンサー率42% (156/364)

ほとんど出来てるので、fukurou11 さんの回答のコピペですが、 x^3-2(a-1)x^2-2(a-1)x+2=0 (x+1)(x^2-2ax+2)=0 これが異なる3つの実数解をもつには、x^2-2ax+2=0 …(*) が異なる2つの実数解をもつことが必要。 判別式をDとするとD>0 D/4=a^2-2>0 (a+√2)(a-√2)>0 a<-√2、√2<a ここで、2次方程式(*)の2実解をα、βとすると、  α≠-1 かつ β≠-1 でなければ元の3次方程式は異なる3実解をもつことにならない。 (*)の解は  x = a±√(a^2 - 2) であるから、  -1 ≠ a±√(a^2 - 2) ⇔-a - 1 ≠ ±√(a^2 - 2) ⇔(a+1)^2 ≠ a^2 - 2 ⇔ a ≠ -3/2 したがって、求める範囲は a<-3/2、-3/2<a<-√2、√2<a というように a=-3/2 が除かれるわけです。 高校数学はずいぶん昔のことなので、 回答の書き方が適切かどうかはご自分で判断してくださいね。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

2度も回答ありがとうございました。 助かりました。書き方は自分で考えて完全に理解出来るよう頑張ってみます。

関連するQ&A

  • 2次関数

    解答がなく困ってます。どなたか添削お願いしますm(_ _)m aを0でない定数とする2つの方程式 ax^2-4x+a=0,x^2-ax+a^2-3a=0 について、次の条件を満たすaの値の範囲をそれぞれ求めなさい。 1.2つの方程式がともに実数の解をもつ。 2.どちらかの一方の方程式だけが実数の解をもつ。 *自己解答* 【2次方程式 ax^2+bx+c=0において、判別式D=b^2-4ac】【ax^2-4x+a=0を(1)】【x^2-ax+a^2-3a=0 を(2)】とする。 1.(1)(2)共に実数解なので、判別式も共にD≧0となる。 (1)の判別式16-4a^2≧0→(a-2)(a+2)≦0→-2≦a≦2 (2)の判別式a^2-4a^3+12a^2≧0→解き方が分からず a^2(4a-13)≦0 としてしまいました。→0≦a≦13/4 よってa≠0より 0<a≦2 2.(1)のみが実数解をもつ時 (1)の判別式D≧0→-2≦a≦2 (2)の判別式D<0→a<0または13/4<a よって -2≦a<0 (2)のみが実数解をもつ時 (1)の判別式D<0→a<-2または2<a (2)の判別式D≧0→0≦a≦13/4 よって2<a≦13/4 となったのですが、(2)の判別式が曖昧です。 社会人になってからの勉強ですので相当ブランクがあります。解説と併せてよろしくお願いします。

  • 方程式

    xの方程式{(x^2)ー1} {(x^2)+ax+4}=0が相異なる3つの実数解をもつとき実数aの値を求める問題で {(x^2)ー1}=0を(1) {(x^2)+ax+4}=0を(2)とすると (1)は X^2=1から x=±1ということはわかります これを(2)に代入するとa=5,-5 (2) は判別式が使えそうなので 判別式をつかうと D=(a^2)-16=0になりました a=±4 また(2)に代入すると x=±2になります ここまでしかわかりません

  • 実数解

    3つの2次方程式は少なくとも1つは実数解を持つことを示す問題です。 だたし、a,b,cは実数とします。 (x^2)+3ax+2b-1=0 …(1) (x^2)+2bx+2c-1=0 …(2) (x^2)+2cx+2a-1=0 …(3) (1)の判別式は D/4=(a^2)-2b+1 (2)の判別式は D/4=(b^2)-2c+1 (3)の判別式は D/4=(c^2)-2a+1 となりましたがどのようにして少なくとも1つは実数解ということを探すのでしょうか?

その他の回答 (2)

  • 回答No.2
  • rei00
  • ベストアンサー率50% (1133/2260)

> 答えはa<-3/2、-3/2<a<-√2、√2<aです。  なぜ「a<-3/2、-3/2<a」や「a<-√2、√2<a」となって,a = -3/2 と a = -√2 が除かれているのでしょう。  #1 さんのアドバイスと合わせれば解りますよね。。。

共感・感謝の気持ちを伝えよう!

  • 回答No.1
  • ryn
  • ベストアンサー率42% (156/364)

[2]のほうは間違ってるようですね。 x^2 - 2ax + 2 = 0 の1つの解が -1 になると、 問題の3次方程式は x = -1 で重解となるので "異なる3つの"実数解にはなりません。 [1]はおしいとこまで来てると思います。 3次方程式が3つの実数解を持つためには 少なくとも D>0 でなくてはなりません。 さらに、上にも書いたように x^2 - 2ax + 2 = 0 の異なる2つの実数解が x = -1 とダブってしまっては3つの解にならないので、 この2次方程式の解が -1 ではないという条件が必要です。

共感・感謝の気持ちを伝えよう!

質問者からの補足

解き方(結局はどうなるのか)も教えていただけませんか? 勝手言ってすいません。

関連するQ&A

  • 数学の問題がわかりません^^;教えてください。

    [問題(1)] xについての2次方程式(x-1)(x-2)+(k+a)x+a=0はk≧1であるすべての実数kに対して実数解をもっている。このとき,実数aの範囲を求めよ。 ≪自分の解答≫ x^2+(k+a-3)x+a+2=0という風にまとめて、これから(判別式)使う名かな…と思ったのですが、なんか違うみたいで…。お願いします。 [問題(2)] 4次方程式x^4-2x^3+bx^2-2x+1=0が実数解をもつようなbの値の範囲を求めよ。また,ちょうど3つの実数解をもつとき,bの値と解を求めよ。 ≪自分の解答≫ 初めの方は2次方程式だと(判別式)≧0でいいと思うのですが、4次方程式であと考えられません^^; あと方も、グラフを書いて考えるのかなぁ…と思うのですが、いまいちぴんと来ないのです^^;よろしくお願いします。

  • 高次方程式の問題です。

    高次方程式の問題です。 xの方程式x(x-3)(4x^2+4ax+a^2-9)=0…(1)がある。 [1](1)が異なる3個の実数解をもつような実数の定数aの値を求めよ。 [2]数直線上で(1)の4個の解が等間隔に並ぶようなaの値の個数を求めよ。 という問題なのですが、[1]は自力で解いたので添削をお願いします。 [2]の答えはちなみに4なのですが、どう考えたら良いか分かりませんでした。[2]はヒントだけでも教えて頂けたら幸いです。 [1] 4x^2+4ax+a^2-9…(2)の判別式をDとすると、D/4=4a^2-4(a^2-9)=9>0 ∴異なる二つの実数解をもつ。 題意を満たすには、異なる二つの実数解のうち1つが0または3であればよい。 (i)(2)がx=0を解にもつとき、a^2-9=0 ∴a=±3 a=3のとき、4x^2+12x=4x(x+3)=0,x=0,-3 よって(1)の解はx=-3,0,3の3つ。 a=-3のとき、4x^2-12x=4x(x-3)=0,x=0,3 これは(1)の解が2つになるので、不適。 (ii)(2)がx=3を解にもつとき、36+12a+a^2-9=0,a^2+12a+27=(a+3)(a+9)=0 ∴a=-9,-3 a=-9のとき、4x^2-36x+72=0,x^2-9x+18=(x-6)(x-3)=0,x=3,6 よって(1)の解はx=0,3,6の3つ。 a=-3のとき、(i)と同様不適。 (i)(ii)より、a=3,-9

  • 最大値最小値

    実数a,b,c,dについて、 a^2+b^2+c^2+d^2=1・・・(1) a+b+c+d=1・・・・(2) が成り立つとき、abの値の最大値最小値を求めよ。 次のように考えましたが、自信がありません。 よろしくお願いします。 a+b=s, ab=t とおく。 a,bを解とする方程式、x^2-sx+b=0 が実数解を持つから 判別式から、t=<s^2/4 ・・・(3) また(1)と(2)から、c+d=1-s、cd=s^2-s-t/2 c,dを解とする方程式、x^2-(1-s)x+(s^2-s-t/2)=0 が実数解を持つから 判別式から、t>=s^2-2s-1・・・(4) (3)(4)を満たすtの範囲から、最小値はs=1のときで、-2,最大値は(3)と(4)の交点から s=(4+2√7)/3のときで、(16+4√7)/9 何か条件を落としているような気がします。よろしくお願いします。

  • 対称性とは…?

    下の問題について質問です。 [B3] 3次方程式 x3 + ax2 + b = 0 ……(1) (a,bは定数) があり,x=1 は方程式(1)の解である。 (1) bをaを用いて表せ。 (2) 方程式(1)が異なる3つの実数解をもつようなaの値の範囲を求めよ。 (3) (2)のとき, 方程式(1)の異なる3つの実数解をα,β,γとする。β = α + γ を満たすとき, aの値を求めよ。 解答: (1)(1)にx=1を代入すると1+a+b=0 ∴b=-a-1 (2)(1)はx=1を解にもつから、(x-1)で割り切れる。    よって、(1)⇔(x-1)(x^2+(a+1)x+(a+1))=0 (割り算の筆算を行ってください。)    ここで、2次方程式x^2+(a+1)x+(a+1)=0がx=1を除く異なる2つの実数解をもてばよい。    x≠1だから、x=1を代入するとa=-(3/2)より、a≠-(3/2) …(1)    この2次方程式の判別式をDをおくと、D>0であればよい。    D=(a+1)^2-4(a+1)=(a+1)(a-3)>0 ∴a<-1, 3<a …(2)    (1)(2)より、a<-(3/2),-(3/2)<a<-1,3<a (3)(1)はx=1を解にもつが、α、β、γのいずれにもなりうる。それについて場合分けする。    (a)β=1のとき     2次方程式x^2+(a+1)x+(a+1)=0 から解の公式より、x=(-(a+1)±√(a+1)(a-3))/2     この2つの解がα、γだから、α+γ=-(a+1)     また、2β=2だから、2β=α+γより、-(a+1)=2 ∴a=-3(これは(2)の解を満たすためよい。)    (b)α=1のとき     2次方程式x^2+(a+1)x+(a+1)=0 から同様に、x=(-(a+1)±√(a+1)(a-3))/2     (β,γ)=((-(a+1)±√(a+1)(a-3))/2,(-(a+1)?√(a+1)(a-3))/2)(複号同順)だから、      2β=α+γより、(中略)      ±3√(a+1)(a-3)=a+3 両辺を2乗し、(中略)     2a^2-6a-9=0 解の公式より、a=(3±3√3)/2 これらは(2)を満たす。    (c)γ=1のとき     αとγの対称性より、(b)からa=(3±3√3)/2    (a)~(c)よりa=-3, (3±3√3)/2 (3)のcについてですが、αとγの対称性とは一体何のことですか?よろしくお願いします。

  • 数2の問題(複素数と方程式)を教えてください。

    数2の問題(複素数と方程式)を教えてください。 問題 aを実数の定数とする。3次方程式  x^3+(a-2)x^2+3x-a-2=0 ・・・・・(1) について、次の質問に答えよ。 [1]方程式(1)はaの値に無関係な解をもつことを示せ。 また、その解を求めよ。 [2]方程式(1)が虚数解をもち、その実部が-1であるとき、aの値を求めよ。 また、虚数解をすべて求めよ。 [3]方程式(1)が2重解と他の1つの解をもつとき、aの値を求めよ。 という問題です。 [1]、[2]と[3]の途中までやってみました。 解答 [1]f(x)=x^3+(a-2)x^2+3x-a-2とおくと  f(1)=1+a-2+3-a-2=0 より、f(x)は(x-1)を因数にもつので、  f(x)=(x-1)〔x^2+(a-1)x+a+2〕 と因数分解できる。よって、f(x)=0のとき、  x=1,(-a+1±√(a^2-6a-7))/2 となり、題意は示された。 よって、求める解は、  x=1 (答) [2][1]よりx=1,(-a+1±√(a^2-6a-7))/2であり、 虚数解をもつのは、a^2-6a-7<0のときであるから  a^2-6a-7<0 ⇔ (a+1)(a-7)<0 ∴-1<a<7 ・・・(2) また、実部が-1より  (-a+1)/2=-1 ⇔ -a+1=-2 ∴a=3  ・・・(3) (2)、(3)より、求めるaの値は   a=3 (答) よって  x=(-3+1±√(-4*4))/2=-1±2i したがって、求める虚数解は  x=-1+2i,-1-2i (答) [3]方程式(1)が2重解をもつのは、次の(ア)、(イ)の場合である。  (ア)x^2+(a-1)x+a+2=0がx≠1の重解をもつ。   判別式をDとすると、D=0かつ(-a+1)/2≠1    D=a^2-6a-7=(a+1)(a-7)=0    ∴a=-1,7 かつ a≠1   ゆえに    a=-1,7  (イ)x^2+(a-1)x+a+2=0の解のひとつが1で、他の解が1でない。    1^2+a-1+a+2=0 かつ ???   よって、    a=-1 かつ ??? 以上から、求めるaの値は     ??? となりました。 [1][2]のチェックと[3]の???部分を含めて 解説、解答をよろしくお願いします。

  • 奈良大学の数学の問題です。

    奈良大学の数学の問題です。 xの二次方程式x^2+(a+1)x+a+1/4=0 (以後(1)とする)、x^2+(a-1)x-a^2+b=0((2))がある。 (1)が実数解を持つ時、(2)も必ず実数解をもつようなbの値の範囲を求めよ。 解)  (1)が解を持つようなaの範囲は(分かっているので略)a≦0または2≦a  このaの範囲において(2)も必ず実数解をもつbの範囲を求める。  (2)の判別式をDとすると(2)が実数解をもつ時(略)b≦5/4(a-1/5)+1/5 ここからがいまいちピンときません。解答にはb=5/4(a-1/5)+1/5として、a≦0または2≦aの範囲でとる最小値はa=0のとき1/4だからb≦1/4とあります。 『b=5/4(a-1/5)+1/5のとき、a≦0または2≦aの範囲でとる最小値はa=0のとき1/4』はわかりますが、なぜここで『b=5/4(a-1/5)+1/5として』『だからb≦1/4』がわかりません。 a≦0または2≦a、b≦5/4(a-1/5)+1/5をab平面に図示して二つの領域が重なるときのbの範囲は…と考えていたのですが、この考え方は違うのでしょうか。教えてください。 (数学が苦手なので、一度答えてくださっても、また質問を返すかもしれません。すみません)

  • 2次方程式の問題

    問.2次方程式x^2-2ax+4=0の解が、2つとも1より大きくなるような定数aの範囲として、正しいものはどれか? 回答.(1)方程式x^2-2ax+4=0が2つの実数解をもつので、この方程式の判別式をDとすると、D/4=a^2-4≧0⇔a≦-2,2≦a (2)x=1のとき、y=x^2-2ax+4の値が正であればよいので、1-2a+4>0⇔a<5/2 (3)y=x^2-2ax+4の軸x=aがx=1より右にあればよいので、1<a (1)(2)(3)より求めるaの範囲は2≦a<5/2 上記の回答から質問です。(1)の判別式でなぜ≧が使われているのでしょうか?異なる2つの解をもつ判別式はD>0ではないのでしょうか?(3)のy=x^2-2ax+4の軸x=aがx=1より右にあればよいのでとありますが、これはどういう意味なのでしょうか?よろしくお願いします。

  • この方程式の解法を教えてください

    この方程式の解法を教えてください 「aは実数の定数とし, x^4-ax^3+(a+7)x^2-ax+1=0・・・・(1) t=x+1/x・・・・(2)とする 方程式(1)が2重解を持つとき,aの値を全て求めなさい.」 という問題がわかりません. x≠0であることに注意して,(1)の式を変形して(2)を代入すると t^2-at+a+5=0・・・・(3) また(2)の式を変形させるとx^2-tx+1=0・・・・(4) 僕は(1)の式が2重解をもつのは(4)の判別式が0になるときなので t=±2を(3)に代入してa=9,-3だと思いました. しかし,答えにはさらに2±2√6((3)が重解を持つとき)とありました. (1)が重解を持つときなぜ(3)も重解を持つのですか?

  • 実数解の問題

    お願いします (1) x-y=k x^2+xy+y^2=4 この連立方程式が2組の相違なる実数解をもつとき、kの値の範囲を求める問題です。 x-y=k        (1) x^2+xy+y^2=4   (2) (1)よりy=x-k (3) x^2+x(x-k)+(x-k)^2=4 3x^2-3kx+k^2‐4=0  (4) 今、参考書をべんきょうしているのですが答えに文章に ここで(4)の実数解にたいして、(3)よりyの実数解がただ1つ定まることにより、(4)が相異なる2つの実数解をもつkの値の範囲を求めれば、(4)の判別式をDすると書いてありますが、よく意味がわかりません。 とくに実数解とはなんですか? 字のとおり、実物の数字の答え?? (2) xの方程式(x^2-1)(x^2+ax+4)=0が相異なる3つの実数解をもつとき、実数aの値をもとめる (x^2-1)(x^2+ax+4)=0 から x^2-1=0 (1) x^2+ax+4=0 (2) この二つの方程式から (1)よりx=±1と二つの解がでますが、 3つめの解はどのようにしてもとめるのですか? 親切にお願いします

  • 判別式の過程について

    これで合ってますか? ax^2+6x+a-8=0 判別式をDとおく。 D=36-4(a-8)・a  =36-4a^2+32a  =-4a^2+32a+36  =(a-9)(a+4) D>0すなわち-1<a<0、0<a<9のとき異なる2つの実数解 D=0すなわちa=-1、9のとき重解 D<0すなわちa<-1、9<aのとき異なる2つの虚数解 a=0のとき方程式は6x-8=0となり、1つの実数解 時間のある方、ご回答宜しくお願いします。