• ベストアンサー
  • すぐに回答を!

基礎からのチャート式数学IIからの質もんです

平成13年度発行の基礎からのチャート式数学IIからの質もんです 。 例題10(p29) xについての方程式 X^2+2aX+1=0...1 X^2+2aX+6-a=0...2 X^2-2aX-4a=0...3 問題 式1,2,3,のうちちょうど二つが実数解をもつ実数aの値の範囲は? この答えで、 1の判別式が0未満、2の判別式が0未満、 3の判別式が0未満の一つだけが成り立つaの値の範囲を求める。 と書いてあるのですが、なぜそうなるのかわかりません。 答えは、aは、ー4より大きく、ー3以下とあります。 注 Xの二乗をX^2と書きました。 よろしくお願いします。

noname#60704

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数158
  • ありがとう数2

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.2
  • aliver
  • ベストアンサー率16% (1/6)

落ち着いて整理しましょう。 問題:式1,2,3のうちちょうど二つが実数回を持つ~  ・・・集合は習いましたか?まぁ習っていなくてもよく考えれば分かるはずです。 問題には書かれていませんが、数IIでは、数は大きく分けて実数と虚数の二つしかないのです。「実数でない」=「虚数」なんです。 ここで、問題には二つが「実数解を持つ」、とあります。つまり残りの一つは「実数解を持たない」=「虚数解を持つ」なんです。 判別式は分かると思います。判別式Dが0より小さいとその式は虚数解を持つことになります。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

わかりました ありがとうございます

関連するQ&A

  • 異なる2つの実数解をもつ(高校数学II)

    2次方程式 x^2+(a-2)x+4=0が、次の条件を満たすとき、定数aの値またはその値の範囲を求めよ。 (1)重解をもつ (2)異なる2つの実数解をもつ (1)は判別式を使ってa=-2,6という答えを出せたんですけど、(2)のやり方がどんなに考えてもわかりません。だれかわかる方教えてください・・・。 ※答えはa<-2,a>6となるんですけど・・・。

  • 数学Iの問題

    a,bは定数とする。2次方程式   x^2+ax+a^2+ab+2=0  は、定数aがどのような値であっても決して実数解をもたない。このとき、定数bの値の範囲を求めよ。  という問題で、答えは-√6<b<√6となります。 判別式D=-3a^2-4ab-8で そのまた判別式を解くとb^2<6となり -√6<b<√6 と答えがでたのですが、どうして判別式を2回も使っていいのかわかりません。どなたか教えてください。

  • 解の存在条件

    x^2+y^2=1・・(1),y=x+k・・(2) 実数解(x,y)が存在するためのkの値の範囲を 求めよ。 (1)に(2)を代入して、まとめると、2x^2+2kx+k^2-1=0 これが実数解をもつから、 判別式から、-√2=<k=<√2と解答にはあります。 実数解xは(1)の条件から、-1=<x=<1に存在しなければならないから、 判別式の条件に、、-1=<x=<1に存在するという条件を付け加えなければならないと 思うのですが、どうしてなくてもいいのでしょうか。

その他の回答 (1)

  • 回答No.1
  • R_Earl
  • ベストアンサー率55% (473/849)

> 1の判別式が0未満、2の判別式が0未満、 > 3の判別式が0未満の一つだけが成り立つaの値の範囲を求める。 「判別式が0未満」 → 「実数解を持たない」 「3つのうち、1つだけ判別式が0未満」 → 「1つは判別式が0未満、他の2つは判別式が0以上」 → 「1つは実数解無し、他の2つは実数解を持つ」

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 数IIの2次方程式の問題をお願いします

    こんにちは、次の問題がわからないので教えてください。 「xについての方程式x2+2xー3=m(xーk)がすべての実数mに対して実数貝を持つような定数kの値の範囲を求めよ」です 答えはこの本の解答によると  判別式を2回も使っています。そこがよくわからないので、どうか解答お願いします

  • 解と係数の関係

    2次方程式 x^2+2mx+6-m=0 が、1より大きい異なる2つの実数解を持つとき、定数mの値の範囲を求めよ。 という問題で、 判別式より m<-3,2<m ・・・(1) α>1 かつ β>1 より α+β>2 αβ-(α+β)+1>0 α+β=-2m αβ=6-m よって、-7<m<-1 ここで質問です、αβ-(α+β)+1>0,をαβ>1,となぜしてはいけないのですか?

  • 方程式

    xの方程式{(x^2)ー1} {(x^2)+ax+4}=0が相異なる3つの実数解をもつとき実数aの値を求める問題で {(x^2)ー1}=0を(1) {(x^2)+ax+4}=0を(2)とすると (1)は X^2=1から x=±1ということはわかります これを(2)に代入するとa=5,-5 (2) は判別式が使えそうなので 判別式をつかうと D=(a^2)-16=0になりました a=±4 また(2)に代入すると x=±2になります ここまでしかわかりません

  • 実数解を持つ条件 2次関数

    kを定数とする、2つの2次方程式 2x^2-5x+k=0  ・・(1) x^2+2kx+k^2-k+1=0 ・・(2) について(1)、(2)がともに実数解を持つとき定数k の値の範囲を求めよ。という問題ですが 判別式を使うと実数解を持つのでD≧0ですよね。 自分でやってみました。 (1)25-8k≧0で k≦25/8 (2)4k-4≧0で k≧1 両方を満たさなければならないので 1≦k≦25/8という答えでいいのでしょうか? 全く自信ない答えなのですが、、。

  • 質問

    ある問題集に 2次方程式x^2-(8-a)x+12-ab=0が定数aの値にかかわらず実数解をもつときの定数bの値の範囲を求めよ。 という問題がありました。 まず判別式で計算しました。 そうしたら(2b-8)^2-16≧0・・・(1) となりました。 しかしここからがわかりません。 解説を見て見ると、「(1)がすべての実数aの値に対して成り立つ条件はb^2-8b+12≦0」となっていました。 (1)を更に判別式に代入することは分かるんですが、なぜ0以下にしなければならないのでしょうか??

  • 逆に・・・

     十数年来の疑問を解決したいと思い、ここで質問させて頂きます。大した話しではないのですが・・・。  少なくとも昔の受験問題では、   (1) k^2+2(x+y)k+(2xy+1)=0において、kが実数だとする。(x,y)の範囲を図示せよ。   (2) k^2+2(x+y)k+(2xy+1)=0において、kが任意の実数だとする。(x,y)の範囲を図示せよ。 といった問題が出ていたと思います。お聞きしたいのは、以下に示す解答に逆の検査が必要かどうかですが、まず私には、(1)と(2)が問題として別物に見えます。 (1)の場合  (1)は、可能な全ての実数kに対する(x,y)の満たすべき範囲と、読めます(私には)。字数を少なくしたいので、通常よりも切り詰めて書きますが、   与式においてkが実数 ⇔ 与式の判別式D≧0 なので、   D=(x+y)^2-(2xy+1)=x^2+y^2-1≧0 が解答であり、ここで、   与式の判別式D≧0 ⇒ 与式においてkが実数 を証明しようとしたら、必要十分性を分かっていないとして、減点対象になってもおかしくないと思います。 (2)の場合  (2)は、任意の実数kなので、少なくとも判別式0以上ということで、   与式においてkが任意の実数 ⇒ 与式の判別式D≧0 という事になり、十分性の証明が必要と思えます。(x,y)が、   D=(x+y)^2-(2xy+1)=x^2+y^2-1≧0 を満たしたところで、kが任意の実数をとれるかは、わからないので。私には、これくらいしか考えつけないのですが、逆を言うために(Rは実数全体)、   A={k∈R|k^2+2(x+y)k+(2xy+1)=0 かつ D=x^2+y^2-1≧0} とします。  k∈Rとすれば、そのkについて、   k^2+2(x+y)k+(2xy+1)=0 すなわち、   2(x+k)y=-2x-k^2-1 を満たす(x,y)は、x≠-kであれば、   y=-(2x+k^2+1)/2/(x+k) なので存在し、kは与式を満たす実数なので、k∈A。  x=-kの場合は、   0=2k-k^2-1 となるので、   k^2-2k+1=(k-1)^2=0 ⇒ x=-k=-1(y任意) ⇒ kは与式を満たす実数なので、k∈A となる。従ってR⊂Aであるが、A⊂Rは明らかなので、A=R。  この証明は、少なくとも高校レベルでは、決して易しくないと思います。  何を言いたいかというと、(1),(2)の模範解答に関して、逆の証明を行っているのを見た事がない、という事です(これは、はっきり記憶しています)。その理由なのですが、  (a) (1)と(2)が同じものだと、多くの場合誤解(?)されている.  (b) (2)で逆の証明が難しいので、省略された. と思っていたのですが、考えすぎでしょうか?

  • 複素数

    P(x)=x^3+(1-2a)x^2+2ax+b (a,bは実数の定数)があり、P(-1)=0を満たしている。 ①方程式P(x)=0が異なる2つの実数解をもつときのaの値がわかりません。教えていただきたいです。 異なる2つの実数解から、判別式D>0 を使うんだと思うのですが、 P(x)=(x+1)(x^2-2ax+4a)から、0=(x+1)(x^2-2ax+4a)で、これが(x^2-2ax+4a)=0のとき異なる実数解を持てばいいのだからD>0を使うのかなって、考えてるんですが、aの値が3つに固定されていて、範囲では無いので悩んでいます。 なお、答えはわかりません。

  • 数学 二次方程式 定数の範囲について

    x^2+ax+3a=0 (1) x^2-ax+a^2-1=0 (2) 二つの二次方程式がともに実数解をもつように定数aの値を求めよ。 (1) 判別式D≧0を使う。 a^2-12a≧0 a≦0 、 12≦a (2) 同じく判別式D≧0を使う。 -3a^2+4≧0 a≦-(2√3)/3 、 (2√3)/3≦a 私の答え a≦0 、 (2√3)/3≦a となったのですが、答えは -(2√3)/3≦a≦0 のようです。 私はどこで間違ったのでしょうか? 調べて考えた結果、D≧0ではなく、どこかでD≦0となる部分があるように思えました。 ですが、どこでなるのかもわからないし、なぜD≦0になるのかもわかりません。 実数解を持つようにいわれてるのに、答えに負の範囲があるのも疑問です。(私の間違った答えにも0≧aがあるのですが、なぜなんでしょうか。)

  • 3次不等式が成り立つようなaの値の範囲(2変数)

    aは負でない実数とする。 -1/2≦(x-y)/(x+y)≦1/2 を満たすすべての正の実数x,yに対し、x^3-3a^2xy^2+2y^3≧0が成り立つようなaの値の範囲を求めよ。 この問題に取り組んでいるのですが、何をやるのかがわからず困っています。 2変数なので「1文字固定」という考え方を使うのかな?と思ったのですが、使い方がよくわからずダメでした。 3次なので判別式(?)も利用できませんでした。 ヒントやアドバイスいただければ幸いです。よろしくお願いします

  • 極値をもつ条件

     高等数学IIIについての質問です。  関数 f(x)=x+1/x^2+2x+a について、f(x)が極値を持つようなaの値の範囲を求めよ。  この問題について、まず f'(x)=0 となるようなxの値が存在するようにaの値の範囲を定めます。  ちなみに f'(x)=-(x^2+2x-a+2)/(x^2+2x+a)^2 です。  ここで、まず私は f'(x)=0 の両辺に -(x^2+2x+a)^2 を掛けて分母を払い(ついでに分子のマイナスも消去)、その後 x^2+2x-a+2=0 が実数解を持つような、つまり判別式Dについて D≧0 となるようなaの値の範囲(この場合a≧1となります)を求めましたが、実際は D=0 は含まれず、D>0となるようなaの値(a>1となります)を求めなければいけなかったようです。  確かに D=0 、つまり a=1 の時 f(x)=1/x+1 となってしまい極値は持ちませんが、問題の解説では後でD≠0であることの確認をしているわけではなく、いきなりD>0としているので、何か別の判断理由がありそうなのです。その理由はなんなのでしょうか。教えていただけたら幸いです。よろしくお願いします。