分数漸化式の成立条件とは?

このQ&Aのポイント
  • 分数漸化式の成立条件とは、漸化式が成り立つ初項X(1)の条件あるいは範囲を求めるものです。
  • 分数漸化式の成立条件を求めるためには、漸化式(1)の分母である『cX(n)+d』が0にならない条件を考える必要があります。
  • 具体的な条件としては、X(n)≠ー(bc+d^2)/{c(a+d)}となるX(1)の範囲が成立条件となります。
回答を見る
  • ベストアンサー

分数漸化式の成立条件

お世話になります。よろしくお願いします。 ただ今、分数漸化式の成立条件について考えているのですが苦戦しています。 数列のn項をX(n)として、 ある分数漸化式を X(n+1)=(aX(n)+b)/(cX(n)+d) (c≠0)・・・・(1) とします。 この時漸化式(1)が成り立つ初項X(1)の条件あるいは範囲を求めたいのです。 つまり初項X(1)の値によっては漸化式の分母『cX(n)+d』が0になってしまうのでそうならないX(1)の範囲を知りたいのです。 以下途中まで考えた部分です。 cX(n+1)+d=0とならない条件は cX(n+1)+d=c(aX(n)+b)/(cX(n)+d)+d ={c(a+d)X(n)+bc+d^2}/(cX(n)+d) なので、 c(a+d)X(n)+bc+d^2≠0 a+d=0、bc+d^2=0では漸化式が成り立たないので、 cX(n+1)+d=0とならない条件は X(n)≠ー(bc+d^2)/{c(a+d)}となることである。・・・(2) 要するに(2)の条件を満たすX(1)の範囲を求めたいのですが、 X(n)の条件をX(1)の条件にうまく結び付けられません。 この後の方針をよろしくお願いします。

  • vigo24
  • お礼率87% (859/977)

質問者が選んだベストアンサー

  • ベストアンサー
  • rabbit_cat
  • ベストアンサー率40% (829/2062)
回答No.1

問題の漸化式は、 [X(n+1)] // [ a b ][x(n)] [ 1 ]   [ c d ][ 1 ] と書けます。2行1列の縦ベクトルと、2行2列の行列です。 // は平行という意味です。 なんで、 [X(n)] // ([ a b ])^(n-1) [x(1)] [ 1 ]   ([ c d ])    [ 1 ] と書けます。 というわけで、ものすごい直接的な方法として、2行2列行列 A = [a b]   [c d] のn乗 A^n = [a_n b_n]    [c_n d_n] を求めて、 c_n * X(1) + d(n) が0にならない条件を求めればいいですかね。 ただ、もうちょっと真面目に考えれば、直接的な方法以外にもっと頭のいい方法があるような気もします。

vigo24
質問者

お礼

ご回答どうもありがとうございます! 分数漸化式をベクトルの平行関係に置き換えて、分母0になる部分をうまく処理するというのはすごい方法ですね。 『分数漸化式の成立条件』は私としてはとても重要なことだと思うのですが、教科書、参考書などにも載ってなくて困っておりました。 とても勉強になりました。 私のやり方だとやはり無理なんでしょうね。 >ただ、もうちょっと真面目に考えれば、直接的な方法以外にもっと頭のいい方法があるような気もします。 もっと良い方法が思い付きましたらそちらも是非教えてください。

関連するQ&A

  • 分数漸化式で特性方程式が重解を持つ場合の途中計算についてです。

    分数漸化式の途中計算で行き詰って困っています。 よろしくお願いします。 分数漸化式 x[n+1]=(a(xn)+b)/(c(xn)+d)において 分数漸化式の特性方程式 k=(ak+b)/(ck+d) が重解αを持つ時 (ck+d)^2/(ad-bc)=1 となり 1/(xn-α)が等差数列になる。 みたいなのですが 途中式「(ck+d)^2/(ad-bc)=1」が証明できずに困っています。 よろしくお願い致します。

  • 分数の形の漸化式

    分数の形の漸化式は、なぜb[n]=a[n]-αとおくのか? a[1]=4、a[n+1]=(4a[n]-9)/(a[n]-2) (n=1,2、3,・・・) で定められる数列の一般こうa[n]を求める。 という問題で、b[n]=a[n]-αとおいて漸化式を解くとあるのですが、 なぜ、b[n]=a[n]-αを思いついたのか? 教えていただけますか? 参考までに、問題の答えは、a[n]=(1/n)+3です。

  • すごく特殊な漸化式、一見解けそうにも無いけど解けるもの

    僕は、高校の数学にたずさわるものです。 長年、高校数学をやっていると、たとえば、普通の漸化式などは、見ていて飽きてきます。 そこで、アンケート的で申し訳ないですが、表題のような漸化式と、その解法を紹介していただけないでしょうか。 できるかぎり珍しいものが好みです。 僕のほうから、例を一つ。 a_(n+1)=2(a_n)^2-1 , a_1=c (ただし、-1≦c≦1) (解法) a_n=cos b_n とおくと、 cos b_(n+1)=2(cos b_n)^2-1=cos 2b_n (2倍角より) よって、 a_n=cos b_n =cos 2b_(n-1) =……=cos {b_1*2^(n-1)} ただし、cos b_1=cよりb_1=arccos c ただ、初項を区間(1,∞)に変化させればどうなるとか、漸化式の係数を変化させればどうなるかとかは、わかりませんので、それについてもアイデアがありましたら、教えていただきたいです。

  • 漸化式について

    漸化式でa_nを求める問題で、 2a_(n+1)=(a_n)+1などの条件式に対して 2c=c+1とa_n+1もa_nも両方ともcでおくことのできるのはなぜですか? a_n+1=a_nではないのに両方同じ文字cでおけるんでしょうか?

  • 数列 漸化式

    A(n+1)=2A(n)+n (初項A(1)=1) という数列があるとします。 この一般項の形を求めるのに、この漸化式を満たす数列{B(n)}=αn+βを設定して、 この漸化式に代入、恒等式から{B(n)=-n-1}がわかります。 この{B(n)}の式が最初の漸化式を満たすわけですから、 A(n+1)=2A(n)+n B(n+1)=2B(n)+nの両辺を引いて A(n+1)-B(n+1)=2(A(n)-B(n))という等比数列が成り立つので、 A(n)=3*(2のn-1乗)-n-1   となると思うのですが、 ここから質問です。 なぜ最初の漸化式を満たした、B(n)=-n-1 と これまた漸化式を満たしている、A(n)=3*(2のn-1乗)-n-1 が異なっているのでしょうか? 回答お願いいたします。

  • 漸化式の問題

    確率の問題を解いていてマルコフチェーンを使う問題がありました。 そこで出た関係式は A(n+1)=1/2{C(n)+D(n)} B(n+1)=1/2{A(n)+D(n)} C(n+1)=1/2{A(n)+B(n)} D(n+1)=1/2{B(n)+C(n)} A(1)=D(1)=0 B(1)=C(1)=1/2です。 ここからどうやってこの漸化式を解くことができますか?

  • 行列式の漸化式からの解の出し方

    n(n > 2)次正方行列式の問題です。 |a b 0 0 0 0| |c a b 0 0 0| |0 c a b 0 0| |0 0 c a b 0| |0 0 0 c a b| |0 0 0 0 c a| ※c, a, b が直線状に並んでいるn×n行列です。それ以外はすべて0。 これについての漸化式を、次のように出しました。(正誤不明) Xn = a Xn-1 - bc Xn-2 … n, n-1, n-2 は添え字 「求めた漸化式について、a = 1, b = 1, c = 5が与えられた場合、 Xの値が1111となる最小のnを求めなさい。」 解説・答えが無いために困っています。 お願いします。

  • 漸化式

    よろしくお願いします。 [問題] 次の条件で定められる数列{An}の一般項を求めよ。  A1=2、An+1=An/(1+An) (n=1、2、3、……) [解] 条件により A1=2/1、A2=2/3、A3=2/5、A4=2/7  よって、一般に         An=2/(2n-1) ・・・・・・(1)  となることが推測される。   一般項が(1)である数列{An}が、条件を満たすことを示す。  [1] (1)でn=1とおくと  A1=2  [2] (1)をAn/(1+An)に代入すると       An/(1+An)=2/(2n-1)÷{1+2/(2n-1)}              =2/(2n-1)÷(2n+1)/(2n-1)              =2/(2n+1)              =2/{2(n+1)-1}    よって、An+1=An/(1+An) が成り立つ。  [1]、[2]から、求める一般項は  An=2/(2n-1)。 ※このサイトだと項の番号をうまく表記できないので、A1は初項、Anは第n項、An+1は第n+1項などと表しています。 この問題は数列の一般項を推測し、推測した一般項が条件を満たすことを示して、一般項を求めてるみたいなのですが。 [2]の証明で、どうして(1)が漸化式を満たしてるのか、よく分かりません。どうしてですか?。 また、(1)は推測したものだから、全ての自然数nについて(1)が必ず成り立つとは言えないですよね?。なら、(1)を漸化式に代入できないと思うのですが、どうして代入できるのですか?。 以上ですが。分かるかた、教えてくださいm(__)m。

  • 漸化式を誰か教えてください

    今、漸化式の問題を解いているのですがどうしても分からない問題があるので教えてください。 問題は a(1)=(1/3),【3^(n-1)】a(n+1)=【3^n】a(n)+1(n=1,2,3,…)で定められる数列{a(n)}の初項から第n項までの和をS(n)とする。 このとき、lim【n→∞】S(n)の値は3/4で求めかたが分かりませんので、所々教えてください。 時間があるかた教えていただければ幸いです。 この問題を解くにはb(n)=【3^n】a(n)とすると漸化式が求められるそうなのですが (1) b(n+1)=b(n)+1になるのでしょうか? 【3^(n-1)】a(n+1)はb(n+1)になってしまうの? (2) b(1)=3*((1/3)=1になってしまうの? (3) b(n)=1+(n-1)*1=nの式はどこから現われたのか? (4) a(n)=【n/(3^n)】とSn=Σ(n,k=1) 【k/(3^k)】は何処から現れたのか? (5) S(n)-(1/3)*S(n)は何処から現われたのか? (6) ↑を計算すると(1/3)+(1/3^2)+…+(1/3^n)-【n/(3^(n+1)】 となりますが、どうしてΣ(n,k=1)【n/(3^(n+1)】となるのでしょうか? (7) (【(1/3)*{1-(1/3)n}】/【1-(1/3)】) -n/【3^(n+1)】は何処から現われたのでしょうか? ↑を計算すると(1/2)*【1-(1/3)n】-n/【3^(n+1)】となります。 S(n)=(3/4)*【【1-(1/3)n】】-(3/2)*n/【3^(n+1)】の形にどうしてなるのか分かりません。 (8) ↑の式は(1/3)nのnに∞を代入して0,【3^(n+1)】のnの部分に代入して0になって3/4となるのでしょうか?

  • 連続6項の漸化式

    P(n+6)={P(n+5)+P(n+4)+P(n+3)+P(n+2)+P(n+1)+P(n)}/6 という連続する6項の漸化式の解き方がわかりません。 次のような連続2項の漸化式なら P(n+2)=a*P(n+1)+b*P(n) x^2=ax+b の解をα、βとして P(n+2)-αP(n+1)=β{P(n+1)-αP(n)} として、P(n+1)-P(n)=A(n)とでも置いて A(n+1)=βA(n) として解くことができます。 連続6項の時も同じようにxの6次方程式を解いて 計算することができるのでしょうか? よろしくお願いします。