• ベストアンサー
  • すぐに回答を!

連続6項の漸化式

P(n+6)={P(n+5)+P(n+4)+P(n+3)+P(n+2)+P(n+1)+P(n)}/6 という連続する6項の漸化式の解き方がわかりません。 次のような連続2項の漸化式なら P(n+2)=a*P(n+1)+b*P(n) x^2=ax+b の解をα、βとして P(n+2)-αP(n+1)=β{P(n+1)-αP(n)} として、P(n+1)-P(n)=A(n)とでも置いて A(n+1)=βA(n) として解くことができます。 連続6項の時も同じようにxの6次方程式を解いて 計算することができるのでしょうか? よろしくお願いします。

共感・応援の気持ちを伝えよう!

  • 回答数3
  • 閲覧数133
  • ありがとう数3

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.3

f(X)=6X^5+5X^4+4X^3+3X^2+2X+1の根が代数的に解けるかどうかは、f(X)のガロア群が可解群かどうかを調べれば分かります。 ガロア群を決定するのは一般には面倒なのですが、今回のケースでは、下の参考に示すように、5次対称群になります。5次対称群が可解群でないので、f(X)の根は、代数的に解けないことが分かります。 (参考) f(X)のガロア群をGと置きます。Y=1/Xをf(X)に代入して、分母を払うと、次のh(Y)を得ます。h(Y)のガロア群もGです。   h(Y) = Y^5+2Y^4+3Y^3+4Y^2+5Y+6 h(Y)は、mod11でみても既約です(次数が2以下の多項式が有限個しかないので、それでh(Y)が割り切れるかどうかをすべて試してみればよい)。したがって、Gは、位数5の巡回群を含みます。 また、mod19で、h(Y)は、次のように既約な2次式と3次式に因数分解されます:   h(Y) = (Y^2+7Y+3)(Y^3+14Y^2+16Y+2) mod19 したがって、Gは、位数6の巡回群(位数2の巡回群と位数3の巡回群の直積)を含みます。 5次対称群の部分群で、位数5の巡回群と位数6の巡回群の両方を含むものは、5次対称群しかありません。したがって、Gは、5次対称群です。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

詳しく教えていただきありがとうございます。正直内容を理解できてませんが、 ガロア理論を勉強する意欲が出てきました。ありがとうございました。

関連するQ&A

  • 3項間漸化式の解き方(特性方程式が虚数解)

    皆様、こんにちは。 特性方程式が虚数解を持つときの漸化式の解き方を教えてください。 今、 3a[n+2]+2a[n+1]+4a[n]=0  a[1]=2  a[2]=3 という漸化式を解いているのですが、a[n]の一般項を実数で出すことができません。 どなたか教えてください。 よろしくお願いします。

  • 分数型漸化式の一般項

    a_{n+1}=ra_n+s/pa_n+q という形の漸化式で a_1=4 a_{n+1}=5a_n+3/a_n+3 特性方程式を使うと x=5x+3/x+3 x(x+3)=5x+3 x^2-2x-3=0 (x-3)(x+1)=0 x=3,-1 になって、これが重解になっていれば、何とかできるのですが・・・・ 一般項を導き出す考え方がおかしいのでしょうか? 明日定期テストなので、早めに回答もらえると嬉しいです。

  • 漸化式a(n+1)=p・a(n)+qの解き方

    お世話になっております。基本の漸化式について質問させて下さい。 教科書の基本例題を通して解説下さると有り難いです。 問「条件 A1=1、A(n+1)=3・A(n)+2 で定まる数列{An}の一般項を求めよ」 まず、漸化式についてA(n+1)=x、A(n)=x とおいて方程式x=3x+2 …(1)を立てる。 漸化式から(1)式を辺々引いて、A(n+1)-x=3{A(n)-x}…(2) (2)が成り立つことは、(1)の解x=-1を(2)に代入して展開すれば成り立つから、(1)(2)の意味はわかりました。 次に教科書の解では、A(n)-x=B(n)とおくとき、(2)式は、B(n+1)=3・B(n)…(3) と表せることが、唐突に書かれておりましてこの意味が中々解らずに困っておるのですが、色々探ってみたら (3)式が成り立つのは、与えられた漸化式から {An}=1,5,17,53,……であるから、{Bn}={An+1}=2,6,18,54,……であって、ここから例えば n=1のとき(2)式の左辺はA(2)-(-1)=A(2)+1=6。つまり{Bn}、(n=1,2,3……)に対して{B(n+1)}に等しいから、(3)式が成り立つということでしょうか。 また、この(回りくどい)質問が仮に正しいとして、この基本の漸化式を解く場合はいつもこの考え方(与えられた条件から元の数列の3~4項くらいは求めておく)で解くものでしょうか。 或いは上で書いた教科書の解のように、即座にB(n+1)=p・B(n)が成り立つものとして解くのでしょうか。 長ったらしい質問で申し訳ありませんが、もう少しで基本が掴めそうなので、駄目押しのご回答を下さい。宜しくお願いします。

その他の回答 (2)

  • 回答No.2
  • alice_44
  • ベストアンサー率44% (2109/4758)

[1] (X - 1)(6X^5 + 5X^4 + 4X^3 + 3X^2 + 2X + 1) = 0 の X = 1 以外の解は、代数的に表示できないから、 一般項を書き下す方法がなく、近似式しか立てられない。 五次以上の方程式に解公式がないことが問題点であり、 連接4項以下の漸化式ならば、厳密に解くことができる。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

6X^5 + 5X^4 + 4X^3 + 3X^2 + 2X + 1=0 が代数的に解けないということは、どのようにしてわかったのでしょうか。 一般の5次方程式が代数的に解けないことは知っているのですが、 今回の方程式は特別な形で、解析的に解けるというようなことはないのでしょうか?

  • 回答No.1

「連続6項の時も同じようにxの6次方程式を解いて計算することができるのでしょうか?」 ⇒ はい、その通りです。 このケースでは、   [1] X^6-(X^5+X^4+X^3+X^2+X+1)/6 = 0 という方程式を解きます。この根をa,b,c,d,e,fとします:   a = 1   b ≒ -0.67033205   c ≒ -0.375695-0.5702i   d ≒ -0.375695+0.5702i   e ≒ 0.294195-0.66837i   f ≒ 0.294195+0.66837i すると、一般項P(n)は、適当な定数A,B,C,D,E,Fを使って、   P(n) = A+Bb^n+Cc^n+Dd^n+Ee^n+Ff^n と表すことができます。初期条件P(1),P(2),P(3),P(4),P(5),P(6)が分かっていれば、これらを上の式に代入して、A,B,C,D,E,Fの連立方程式とみて解くことにより、A,B,C,D,E,Fを具体的に求めることができます。 同様な方法は、漸化式が一次式であって、[1]式のような方程式が重根を持たないときに、一般的に有効です。重根を持つときは、やや手順が違いますが、解く方法があります。 どうしてこのような方法で一般項が求められるかということについては、「漸化式を行列で表現したときの、係数行列の固有値が[1]式の根である」という事実に基づきます。詳しい説明は省きます。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

行列の理論を使うんですね。 わざわざ根の計算までしていただきありがとうございました。 大変勉強になりました。

関連するQ&A

  • だれか隣接3項間漸化式について教えてください。

    中年男性です。いま数列の勉強をしています。「なるほど高校数学 数列の物語」という読本を 読んでいるのですが、手に負えないので質問させてもらいました。  漸化式  A1=2, A2=3, An+2=5An+1-6An    n>=1 ・・・(1)  を満たす数列が特性方程式X^2=5X-6の解 X=2、X=3 から 2^n-1 と3^n-1に なることは実際に確かめて確認して納得したのですが、続くくだりから判らなくなって しまいました。  そのくだりとは“そこで次に問題となるのが、上記のような等比数列以外にこの  漸化式を満たす数列があるのか、ということです。  結論からいうと、特性方程式が異なる2つの解をもつときは、特性方程式の解を  公比とする等比数列の組み合わせを考えるだけで十分です。このことは次の  ようにして判ります・・・” と書いてあり特性方程式の解以外にないことの証明が始まるものと期待して読み進めたの ですが、漸化式の変形が始まり結局    An+1-2An=(A2-2A1)3^n-1    n>=1  ・・・(2)    An+1-3An=(A2-3A1)2^n-1    n>=1  ・・・(3)  という式になり、(2)式から(3)式を引くことで、    An=(A2-2A1)3^n-1-(A2-3A1)2^n-1     n>=1  となり、条件A1=2、A2=3を代入して一般項は    An=-1×3^n-1+3×2^n-1     n>=1 ・・・(4)  となりました。  これで特性方程式の解から導かれる数列以外に解がないことの  証明になるのでしょうか。また数列2^n-1や数列3^n-1が漸化式を  満たすことはすでにnに1、2、3・・・と代入して確認したのですが  一般項が(4)式であるということはどういうことなのでしょうか。  (4)式にnに1、2、3・・・と代入して確認していませんが(成立するのでしょうが)  このあたりの事情がよく判りません。  どなたか解説して戴けないでしょうか。

  • 漸化式の解法を教えて下さい

    a[n+2]+a[n]=0     a1=0    a2=1 という漸化式の問題が解けなくて困っています。 特性方程式の解が虚数になることは分かったのですがそれ以降が全く進まない状況です。 分かる方居ましたら教えて頂けると嬉しいです。 よろしくお願いします。

  • 三項間の漸化式

     宿題で、次の漸化式から関数式を求めよ、という宿題が出ました。こんな問題です。  f(n+1)-2f(n)+f(n-1)=1   (n>=2) ただしf(1)=1 漸化式が二次式なのはすぐにわかったのです。 そこで、nが2、3、4のときに応じてan^2+bn+cに値を入れ、その式=1として三元連立方程式を解こうとしました。 しかし、どうしても同じ方程式が何個も出てきてしまい、連立することができません。 この問題はどうやって解くべきなのでしょうか? または解けるのでしょうか(笑)?

  • 漸化式の特性方程式

    いくつか質問があります。わかるものだけでもいいので回答よろしくお願いします。 ・「特性方程式」の解釈は、「特性を表す方程式」で合ってますか? ・なぜa_(n+1)=3a_n+2の特性方程式がc=3c+2なのですか? ・なぜ2a_(n+2)=3a_(n+1)-a_nの特性方程式が2x^2=3x-1なのですか? ・なぜ特性方程式の解である平衡値を漸化式の両辺から引けば、二項漸化式を等比数列型に変形できるのですか?

  • 漸化式

    漸化式 ある漸化式について、解き方はわかるのですが、なぜこのように解くのかと言う疑問が残っています。 a1=1,a(n+1)=2a(n)+n-1 自分の解き方としては、a(n)=b(n)+αn+β と置くことですが、なぜこのように置くのでしょうか? わかりにくい質問ですが、もし私の質問内容が理解できる方がいましたら、教えていただけると大変助かります。 よろしくお願いしますb     m(_ _)m

  • 隣接3項間の漸化式

    隣接3項間の漸化式 次の条件によって定められる数列{an}の一般項を求めよ (1)a1=1,a2=2,a(n+2)+4(an+1)-5an=0(括弧の部分は添え字です。以下括弧は省略します) 指針 隣接3項間の漸化式→まず、an+2をx^2,an+1をx,anを1とおいたxの2次方程式(特性方程式を解く。その2解をα、βとするとan+2-αan+1=β(an+1-αan),an+2-βan+1=α(an+1-βan) が成り立つ。この変形を利用して解決する。 (1)できる方程式の解はx=1、ー5→解に1を含むから、漸化式はan+2-an+1=-5(an+1-an)と変形され、階差数列を利用することで解決 教えてほしいところ ・なぜ、an+2をx^2,an+1をx,anを1とおいたxの2次方程式(特性方程式を解くと、an+2-αan+1=β(an+1-αan),an+2-βan+1=α(an+1-βan)を満たすα、βが求まるんですか?? ・α=1,β=ー5として an+2-αan+1=β(an+1-αan),an+2-βan+1=α(an+1-βan)のどちらを利用しても同じ答えが出るのはなぜですか???

  • 連続関数(証明)

    (1)奇数次の代数方程式    x^2n+1 +A1 x^2n +…+A2n x+A2n+1=0   は少なくとも一つ実数解をもつ。 ※Aの横にあるのは下付きで考えてください。 (2)a>0,q∈Nに対して x^q -a=0は正の解をもつ。 の証明方法が分かりません。どちらも “関数f(x)が[a,b]で連続でf(a)・f(b)<0ならば,方程式f(x)=0の解が存在する。”という定理を使うと思うんですが…。よろしくお願いします。

  • 次の漸化式の問題の解き方を教えてください

    次の漸化式の問題の解き方を教えてください

  • 微分方程式との類似、漸化式a[n+1]+p*a[n]=Q(n)

    よく知られていますように、微分方程式と漸化式は似ています。 微分方程式 (dy/dx)+ay=Q(x) の一般解は、 y=e^(-ax) {∫e^(ax)Q(x)dx+C} となるようです。 http://www12.plala.or.jp/ksp/mathInPhys/constOneLinearDiffEq/ を参照しました。 では、漸化式 a[n+1]+p*a[n]=Q(n) の一般解はどのように表されるのでしょうか? Q(n)が0や定数や一次関数のときは、高校数学でよく扱われる漸化式ですが、一般の関数(多項式とも限らない)のときはどのように表されるのでしょうか?

  • 漸化式の問題について

    下の画像の漸化式の問題についてなのですが、(1)の問題を、a(n)のみの漸化式に直して、特性方程式で解く方法を教えていただきたいです。 分かる方いらっしゃいましたらよろしくお願いします。