- ベストアンサー
- すぐに回答を!
数列 漸化式
こんばんは、 数列の漸化式、特性方程式について質問します。 An+1=pAn+q(n=1,2,3、、)p,qは定数はα=pα+qを満たすαを用いて、An+1-α=p(An-α)と変形出来ますよね。 そこで質問なのですが、An+1=pAn +qはAn+1とAnが連続しているからαと置いて、変形できるんですよね? ある問題を解いていて、A2n+1=1/2A2n-1 +1/2(n=1,2,3、、)という式も、 特性方程式を用いて、A2n+1-1=1/2(A2n-1-1)と変形していました。こちらの式は、A2n+1とA2n-1は連続していませんよね? 私の、特性方程式の使い方間違っているんでしょうか? よくわからないので、教えていただきたいです。お願いします!
- syr21
- お礼率46% (65/139)
- 回答数1
- 閲覧数285
- ありがとう数1
質問者が選んだベストアンサー
- ベストアンサー
- 回答No.1
- kabaokaba
- ベストアンサー率51% (724/1416)
>A2n+1とA2n-1は連続していませんよね? してるんですよ. これは A1 A3 A5 ・・・・ という系列を表しています. したがって,A2,A4などといった偶数部分の情報がないだけです. 分かりにくかったら,Bn=A2n+1とおいてください. そうすれば Bn=(1/2) Bn-1 + (1/2) (n=1,2,3,...) となります. 他にも,In+2とInのように「一個とび」の漸化式とかもあります. 添え字の番号にごまかされないのが大事で 順番に生成していくことができれば, その順番で連続していると考えるのです.
関連するQ&A
- だれか隣接3項間漸化式について教えてください。
中年男性です。いま数列の勉強をしています。「なるほど高校数学 数列の物語」という読本を 読んでいるのですが、手に負えないので質問させてもらいました。 漸化式 A1=2, A2=3, An+2=5An+1-6An n>=1 ・・・(1) を満たす数列が特性方程式X^2=5X-6の解 X=2、X=3 から 2^n-1 と3^n-1に なることは実際に確かめて確認して納得したのですが、続くくだりから判らなくなって しまいました。 そのくだりとは“そこで次に問題となるのが、上記のような等比数列以外にこの 漸化式を満たす数列があるのか、ということです。 結論からいうと、特性方程式が異なる2つの解をもつときは、特性方程式の解を 公比とする等比数列の組み合わせを考えるだけで十分です。このことは次の ようにして判ります・・・” と書いてあり特性方程式の解以外にないことの証明が始まるものと期待して読み進めたの ですが、漸化式の変形が始まり結局 An+1-2An=(A2-2A1)3^n-1 n>=1 ・・・(2) An+1-3An=(A2-3A1)2^n-1 n>=1 ・・・(3) という式になり、(2)式から(3)式を引くことで、 An=(A2-2A1)3^n-1-(A2-3A1)2^n-1 n>=1 となり、条件A1=2、A2=3を代入して一般項は An=-1×3^n-1+3×2^n-1 n>=1 ・・・(4) となりました。 これで特性方程式の解から導かれる数列以外に解がないことの 証明になるのでしょうか。また数列2^n-1や数列3^n-1が漸化式を 満たすことはすでにnに1、2、3・・・と代入して確認したのですが 一般項が(4)式であるということはどういうことなのでしょうか。 (4)式にnに1、2、3・・・と代入して確認していませんが(成立するのでしょうが) このあたりの事情がよく判りません。 どなたか解説して戴けないでしょうか。
- ベストアンサー
- 数学・算数
- 高校数列
数列{An}の初項から第n項までの和をSnとする。A2=3. n・Sn=(n-1)(2An+2-n) (n=1、2、3・・・・・)を満たし手いるとき (1) 数列{An}はn・A(n+1)-2(n+1)・An=n+2 ・・(1) (n=1、2、3・・・・・)を満たすことを証明せよ (2) Anをnの式で表せ ちなみにA(n+1)は数列{An}の第n+1項を意味します この問題で(1)は証明できたのですが(2)での解答で n・A(n+1)-2(n+1)・An=n+2 ・・(1)から n(A(n+1)+1)=2(n+1)(An+1)という変形がみられるのですがどうしてそうなるのかわかりません。確かに両辺に+nをすると変形できたり 。あるいは特性方程式よりα=1と求まり変形できるのですが、ここでは変数nがあるので特性方程式が利用できるのかもわかりません。 どなたかわかる人がいましたらお願いします。
- ベストアンサー
- 数学・算数
- だれか漸化式について教えてください。
もういい中年なのですが昔数学で苦手だった分野を 勉強しています。 いま『なるほど高校数学 数列の物語』と云う本を読んでいます。 漸化式のところでつまずいて前に進めません。 どなたか教えてもらえないでしょうか。 ------------------- 初項がA1、An+1=PAn+Q n>1 P、Qは定数 の漸化式で確認しておきましょう。 An+1-α=P(An-α) つまり An+1=PAn-Pα+α と与えられた漸化式 An+1=PAn+Q を見て、定数項を比べると Q=-Pα+α=α(1-P) となり、この式から α=Q/(1-P)・・・・・(1) とすればよいことが判ります。このとき数列{An-α}は An+1-α=P(An-α)より、公比Pの等比数列となり、その 初項は A1-α=A1-Q/(1-P)・・・・・・・(2) なので An-Q/(1-P)=(A1-Q/(1-P))×Pのn-1乗・・・・(3) よって An=(A1-Q/(1-P))×Pのn-1乗+Q/(1-P)・・・・・(4) と一般項が求まります。 ------------------- 数列{An-α}の公比はPになることは直感的に判るのですが 初項はどうして求めるのだろうかと思って読んでいたのですが 最後に求まったのはAnの一般項でした。 それに(4)式にn=1を代入して出てくるのはA1で当たり前の結果 です。 ここでの漸化式はAn+1-α=P(An-α)の形式に持ち込めたら 公比Pの等比数列の公式をあてはめることが出来てnの一般項 が求まると云う主旨かと思うのですが、説明の流れがいまひとつ つかめません。 解説のほどよろしくお願いいたします。
- ベストアンサー
- 数学・算数
- 数列の漸化式a(n+1)=pa(n)+qでc=pc+qを特性方程式と呼んでいい?
「特性方程式」で検索したり、 http://oshiete1.goo.ne.jp/kotaeru.php3?q=2371813 などをみて思うのですが、 数列の漸化式 a(n+1)=pa(n)+q を解くために、準備として考える式 c=pc+q を特性方程式と呼んでいいのでしょうか? 検索したところ、そう呼んでいる人が多いです。 しかし、僕はそう呼びたくはありません。 もちろん、3項間漸化式a(n+2)+pa(n+1)+qa(n)=0で x^2+px+q=0を特性方程式と呼ぶのはいいです。 以前、高校の参考書をたくさん比較したことがあります。 大手の数研出版などは、特性方程式と呼んでいなくて、小規模な出版社では特性方程式と書かれていた記憶があります。 c=pc+qを特性方程式と呼ぶのは、権威ある数学辞典などにも書かれているのでしょうか? それとも、高校のそれも学校外の場所でよく使われる俗語なのでしょうか? 外国ではどうなのでしょうか? 言葉というのは、時々、間違った意味で世間に広まってしまい、それが辞書的にも認知されることがあります。「ホームページ」とか「ハッカー」とか。 c=pc+qを特性方程式と呼ぶのもそういった部類でしょうか? たとえば、みなさんが高校生に教える指導的立場にあったとして、c=pc+qを特性方程式と教えていいのでしょうか? ちなみに、教科書にはそうは絶対にかかれていないと思います。
- ベストアンサー
- 数学・算数
- 数列 (漸化式)
A[1]=1 A[n+1]=4A[n]+2^n (n=1,2,・・・) {A[n]}の一般項を求めたいのですが 両辺2^nで割って、B[n]=A[n]/2^(n-1)とおくと、 B[n]+1=2(B[n]+1)とおけるから特性方程式より、B[n]が2^n -1と求められました その後はA[n]=・・・ どうすればいいのでしょうか? 等差数列なら A[1]+ΣB[k] k=1~(n-1)という感じで求められたのですが・・・ この数列は等差数列なのか、等比数列なのか・・・ 一見等差数列のようですが、+2^nがついていてこれも定数じゃないから、等差数列ともいえないな・・・と思いました。 階差数列?とはいえないかもしれないけど、B[n]が求まったらその後の段階としてどうすればいいのでしょうか、よろしくおねがいします。
- ベストアンサー
- 数学・算数
- 隣接3項間の漸化式
隣接3項間の漸化式 次の条件によって定められる数列{an}の一般項を求めよ (1)a1=1,a2=2,a(n+2)+4(an+1)-5an=0(括弧の部分は添え字です。以下括弧は省略します) 指針 隣接3項間の漸化式→まず、an+2をx^2,an+1をx,anを1とおいたxの2次方程式(特性方程式を解く。その2解をα、βとするとan+2-αan+1=β(an+1-αan),an+2-βan+1=α(an+1-βan) が成り立つ。この変形を利用して解決する。 (1)できる方程式の解はx=1、ー5→解に1を含むから、漸化式はan+2-an+1=-5(an+1-an)と変形され、階差数列を利用することで解決 教えてほしいところ ・なぜ、an+2をx^2,an+1をx,anを1とおいたxの2次方程式(特性方程式を解くと、an+2-αan+1=β(an+1-αan),an+2-βan+1=α(an+1-βan)を満たすα、βが求まるんですか?? ・α=1,β=ー5として an+2-αan+1=β(an+1-αan),an+2-βan+1=α(an+1-βan)のどちらを利用しても同じ答えが出るのはなぜですか???
- ベストアンサー
- 数学・算数
- 漸化式における特性方程式
はじめまして。 現在高校三年生で数学を勉強している文系です。 漸化式の分野で、「特性方程式」というものが出てきました。 参考書や検索して出たページ、過去の質問を参照しましたが、 途中までは理解できるものの、最後のところが理解できません。 というのは、 a_(n+1) = p(a_n) + q …(1) という漸化式が与えられた時、 a_(n+1) - α = β(a_n - α)…(2) と変形できればこの数列は等比数列としてあらわすことができ、 a_nの一般項も求められる。 (2)を展開して係数比較をしていくと P=β , -αβ+α=q より αは x=px+q の解であることがわかる。 これを特性方程式と呼ぶ ここまでは理解できました。(もしおかしいところがあったら指摘してください) しかしその後の このαの解を(1)の漸化式の両辺から引くと… という個所から先が理解できません。 たしかに、(2)の a_(n+1) - α = β(a_n - α) という式でαに解を入れれば一般項を求められるのはわかりますが (1)の式 a_(n+1) = p(a_n) + q の両辺からαを引くと、 a_(n+1) - α = p(a_n) + q - α で(2)の式とは異なってしまい、等比数列と見ることはできなく なってしまいませんか? もしかしたらすごく単純なところを見逃しているのかもしれませんが、 この質問についての回答、よろしくお願いします。
- ベストアンサー
- 数学・算数
質問者からのお礼
なるほど!わかりました。 丁寧に教えていただいてありがとうございました!