• ベストアンサー
  • すぐに回答を!

数列の漸化式

数列の漸化式のひとつの a1=a an+1=pan+q という場合は an+1-c=p(an-c) としてcの値を求めますが、さっき問題を解いていて気付いたのですが、cの値を求める時に、an+1とanをcに置き換えて c=pc+qとして方程式を解くとcの値が求まってしまうのですがなぜですか? 5問位やって確かめたので偶然ではないと思うのですが。学校の教科書にも載っていません。

共感・応援の気持ちを伝えよう!

  • 回答数6
  • 閲覧数301
  • ありがとう数0

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.4
  • zono7
  • ベストアンサー率42% (24/57)

#3の方が言われるとおり,質問者さんのが作った方程式は,特性方程式と言います。漸化式を解くときには一般的な方法です。 ただし,この方法でなぜcが求まるのかは,確かまだ証明されていないはずです。つまりは,もしかすると特性方程式では求められないcがあるかも知れない。なので,現在のところは,特性方程式はcを見つけるための目安としてしか使えません。あくまで,「こうして求めた解が,cに当てはまりやすい」という扱いです(もちろん,普通は特性方程式の解がcです)。 なので,「これで解きなさい」というように教科書に載せることはできないのでしょう。だから,教科書としては,「偶然」当てはまるcを見つけるしかない,と。タテマエとホンネですね。 厳密なことを言えば,解答用紙に「特性方程式より,cを求めて・・・」と書くのもダメ。an+1=pan+q から,いきなり an+1-c=p(an-c)と,変形してしまうのです。特性方程式は,解答用紙の隅っこでちょこちょこっとやって消す・・・。 自分で特性方程式のルールを見つけ出すとは,かなり素晴らしいですね。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 漸化式の…

    漸化式のα=pα+qを利用する方程式の教科書説明で 「p、qを定数、p≠1として漸化式が       an+1=pan+q で表されている時、この式がある値αを用いて       an+1-α=p(an-α) と変形できたとすると、数列{an-α}は公比pの等比数列になる。」ってところで、何故数列{an-α}なのでしょう?数列{an+1-α}ではないのでしょうか?

  • 数列 漸化式

    こんばんは、 数列の漸化式、特性方程式について質問します。 An+1=pAn+q(n=1,2,3、、)p,qは定数はα=pα+qを満たすαを用いて、An+1-α=p(An-α)と変形出来ますよね。 そこで質問なのですが、An+1=pAn +qはAn+1とAnが連続しているからαと置いて、変形できるんですよね? ある問題を解いていて、A2n+1=1/2A2n-1 +1/2(n=1,2,3、、)という式も、 特性方程式を用いて、A2n+1-1=1/2(A2n-1-1)と変形していました。こちらの式は、A2n+1とA2n-1は連続していませんよね? 私の、特性方程式の使い方間違っているんでしょうか? よくわからないので、教えていただきたいです。お願いします!

  • 数列の漸化式質問

    教科書で漸化式の記述です。 an+1=pan+qで与えられている数列の求め方 例 a1=3 an+1=3an-4 で定義されている数列を{an}とする 数列{an}は 3 , 5 , 11 , 29 , 83 ,・・・となりますよね。 この数列{an}の各項から2を引くとできる 数列を{an -2}は 1 , 3 , 9 , 27 , 81 , ・・・ となる。数列{an -2}は、初項1 公比3 の等差数列になっている。 数列{an}に対して、数列{an -2}の一般項は an -2=1×3^n-1となっています。 ここが何でn-1なのですか? {an}はn項あると思うのですが・・・ できるだけ詳しい解答お願いします。

その他の回答 (5)

  • 回答No.6

他の方の回答で、収束先、特性方程式という概念で説明することは適切でないと思います。 線形性、特殊解というキーワードで説明すべきです。

共感・感謝の気持ちを伝えよう!

  • 回答No.5

 「収束する」ことを証明しなくても、以下のように理解すればよいでしょう。|p| > 1 の時にも、p, q が複素数の場合でも使える議論なので、便利だと思います。  数列 {a_n} の初項 a_1 の値が仮に定まっていないものとして、漸化式: a_{n+1} = p・a_n + q ...[1] ...を満たす数列の全体を考えます。  さて、ある定数 c が存在して c = p・c + q ...[2] ...を満たすとき(1次方程式なので、p ≠ 1 なら解が存在する)、おなじみの計算([1] - [2])から a_{n+1} - c = p・(a_n - c) ...を経て a_n = c + p^{n-1}・(a_1 - c) ...[3] ...を得ますね。  もし、ここで漸化式 [1] を満たす数列の初項 a_1 の値が c だったとしましょう。その場合、[3] から分かる通り、全ての自然数 n に対して a_n = c ですね。  というわけで、漸化式 [1] を満たす数列の中で、n に関係なく一定であるようなものがただ1つ存在するわけです。  それを決める式が [2] であるというわけです。

共感・感謝の気持ちを伝えよう!

  • 回答No.3
  • postro
  • ベストアンサー率43% (156/357)

an+1=pan+q c=pc+q 辺辺引き算すると an+1-c=p(an-c) となりますよ。 c=pc+q ←これって「特性方程式」って立派な名前がついています。

共感・感謝の気持ちを伝えよう!

  • 回答No.2

「an が c に収束する」と仮定すれば、その解き方で c が求まります。 しかし、収束することを証明しないと正しく解いたことになりませんね。その証明が面倒だから教科書や参考書に載っていないんでしょう。 答えの見当をつけるのには良い方法と思います。

共感・感謝の気持ちを伝えよう!

  • 回答No.1
  • lile
  • ベストアンサー率14% (231/1577)

なぜかは分りませんがその様になると覚えています。 教科書には載っていないのですか? 回答にはなりませんが、私は先生にその様にならいましたよ。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • だれか漸化式について教えてください。

    もういい中年なのですが昔数学で苦手だった分野を 勉強しています。 いま『なるほど高校数学 数列の物語』と云う本を読んでいます。  漸化式のところでつまずいて前に進めません。  どなたか教えてもらえないでしょうか。  -------------------  初項がA1、An+1=PAn+Q n>1 P、Qは定数  の漸化式で確認しておきましょう。  An+1-α=P(An-α) つまり An+1=PAn-Pα+α  と与えられた漸化式       An+1=PAn+Q  を見て、定数項を比べると   Q=-Pα+α=α(1-P)  となり、この式から       α=Q/(1-P)・・・・・(1)  とすればよいことが判ります。このとき数列{An-α}は  An+1-α=P(An-α)より、公比Pの等比数列となり、その  初項は   A1-α=A1-Q/(1-P)・・・・・・・(2)  なので   An-Q/(1-P)=(A1-Q/(1-P))×Pのn-1乗・・・・(3)  よって   An=(A1-Q/(1-P))×Pのn-1乗+Q/(1-P)・・・・・(4)    と一般項が求まります。  -------------------  数列{An-α}の公比はPになることは直感的に判るのですが  初項はどうして求めるのだろうかと思って読んでいたのですが  最後に求まったのはAnの一般項でした。  それに(4)式にn=1を代入して出てくるのはA1で当たり前の結果  です。  ここでの漸化式はAn+1-α=P(An-α)の形式に持ち込めたら  公比Pの等比数列の公式をあてはめることが出来てnの一般項  が求まると云う主旨かと思うのですが、説明の流れがいまひとつ  つかめません。  解説のほどよろしくお願いいたします。    

  • 漸化式の問題です。

    数Bの漸化式の問題です。 Pを正の定数とする。数列{An}はa1=1 An+1=pAn+p^(-n) (n=1,2,3...) を満たす。 このときAnをpとnを用いて表せ。 帰納法以外で解く方法を教えてください!!

  • だれか隣接3項間漸化式について教えてください。

    中年男性です。いま数列の勉強をしています。「なるほど高校数学 数列の物語」という読本を 読んでいるのですが、手に負えないので質問させてもらいました。  漸化式  A1=2, A2=3, An+2=5An+1-6An    n>=1 ・・・(1)  を満たす数列が特性方程式X^2=5X-6の解 X=2、X=3 から 2^n-1 と3^n-1に なることは実際に確かめて確認して納得したのですが、続くくだりから判らなくなって しまいました。  そのくだりとは“そこで次に問題となるのが、上記のような等比数列以外にこの  漸化式を満たす数列があるのか、ということです。  結論からいうと、特性方程式が異なる2つの解をもつときは、特性方程式の解を  公比とする等比数列の組み合わせを考えるだけで十分です。このことは次の  ようにして判ります・・・” と書いてあり特性方程式の解以外にないことの証明が始まるものと期待して読み進めたの ですが、漸化式の変形が始まり結局    An+1-2An=(A2-2A1)3^n-1    n>=1  ・・・(2)    An+1-3An=(A2-3A1)2^n-1    n>=1  ・・・(3)  という式になり、(2)式から(3)式を引くことで、    An=(A2-2A1)3^n-1-(A2-3A1)2^n-1     n>=1  となり、条件A1=2、A2=3を代入して一般項は    An=-1×3^n-1+3×2^n-1     n>=1 ・・・(4)  となりました。  これで特性方程式の解から導かれる数列以外に解がないことの  証明になるのでしょうか。また数列2^n-1や数列3^n-1が漸化式を  満たすことはすでにnに1、2、3・・・と代入して確認したのですが  一般項が(4)式であるということはどういうことなのでしょうか。  (4)式にnに1、2、3・・・と代入して確認していませんが(成立するのでしょうが)  このあたりの事情がよく判りません。  どなたか解説して戴けないでしょうか。

  • 漸化式と数列の問題です。お願いします。

    漸化式で定義される数列{an}の一般項anを求めよ。 a1=2, an+1=3an+2 (n=1,2,3,・・・・)

  • 漸化式a(n+1)=p・a(n)+qの解き方

    お世話になっております。基本の漸化式について質問させて下さい。 教科書の基本例題を通して解説下さると有り難いです。 問「条件 A1=1、A(n+1)=3・A(n)+2 で定まる数列{An}の一般項を求めよ」 まず、漸化式についてA(n+1)=x、A(n)=x とおいて方程式x=3x+2 …(1)を立てる。 漸化式から(1)式を辺々引いて、A(n+1)-x=3{A(n)-x}…(2) (2)が成り立つことは、(1)の解x=-1を(2)に代入して展開すれば成り立つから、(1)(2)の意味はわかりました。 次に教科書の解では、A(n)-x=B(n)とおくとき、(2)式は、B(n+1)=3・B(n)…(3) と表せることが、唐突に書かれておりましてこの意味が中々解らずに困っておるのですが、色々探ってみたら (3)式が成り立つのは、与えられた漸化式から {An}=1,5,17,53,……であるから、{Bn}={An+1}=2,6,18,54,……であって、ここから例えば n=1のとき(2)式の左辺はA(2)-(-1)=A(2)+1=6。つまり{Bn}、(n=1,2,3……)に対して{B(n+1)}に等しいから、(3)式が成り立つということでしょうか。 また、この(回りくどい)質問が仮に正しいとして、この基本の漸化式を解く場合はいつもこの考え方(与えられた条件から元の数列の3~4項くらいは求めておく)で解くものでしょうか。 或いは上で書いた教科書の解のように、即座にB(n+1)=p・B(n)が成り立つものとして解くのでしょうか。 長ったらしい質問で申し訳ありませんが、もう少しで基本が掴めそうなので、駄目押しのご回答を下さい。宜しくお願いします。

  • 数IIBの数列の漸化式の問題です。

    数IIBの数列の漸化式の問題です。 本当に分からないので、基礎の知識から詳しく教えてもらえるとありがたいです・・・ 1. 数列1,1,4,1,4,9,1,4,9,16,1,4,9,16,25,・・・・・・がある。 この数列の第100項および初項から第100項までの和を求めよ。 2 数列1,2,3,・・・・・,nにおいて次の積の和を求めよ。 (1)異なる2つの項の積の和(n≧2) (2)互いに隣り合わない異なる2つの項の積の和(n≧3) 3 次の条件によって定められる数列{An}の一般項を求めよ。 (1)A1=1 An+1=9-2An (2)A1=1 An+1=4An+3 4 数列{An}の初項から第n項までの和SnがSn=n-Anであるとき、a1,a2,a3および{An}の一般項を求めよ。

  • 数列・漸化式

    数列{an}を a1=(sinθ)^2 an+1=4an(1-an) (n=1,2,3,・・・)と定義する (ただしθは 0<θ<π/2 を満たす定数) このとき an={sin(2^n-1)θ}^2 はすぐ帰納法で示せるんですが nがどのような値をとってもanが一定になるようにθを定めたいのですが どのようにθの値を決めればいいのでしょうか?

  • 数列です

    漸化式 a1=1, an+1=2an+2^n (n=1,2,3,……)で 定められる数列{an}がある。 (1) bn=an/2^n とおく。 数列{bn}の満たす漸化式を求めよ。 (2) 数列{an}の一般項を求めよ。 ↓の写真は(1)を解いてる途中です。 この先で困っています。 できる方は教えてくださると嬉しいです。

  • 数学Bの漸化式です

    数学Bの漸化式です。 わからない問題があるのでわかりやすく教えて下さい。 [問題] 漸化式A1=1、An+1=2An+2^n (n=1.2.3.....)で定められている数列{An}がある。 <1>Bn=An/2^nとおく。数列{Bn}の満たす漸化式を求めよ。 <2>数列{An}の一般式を求めよ。 [注意]^←この記号は二乗を意味してます。 と言う問題です。よろしくお願いします。

  • 数列  漸化式

    教科書を参考にしても、以下の四問が分からなくってかなりあせってます。答えまで導いていただいたら幸いです。よろしくお願いします!!  次の漸化式で表された数列の一般項a(n)を求めよ (1) a(1)=1、a(n+1)=a(n) / a(n)+1 (2) a(1)=1、a(n+1) / n+1=a(n) / n +2 (3) a(1)=1、n・a(n+1) =(n+1)・a(n) + n(n+1) (4) a(1)=3、a(n+1) = 3a(n) + 3のn+1乗