• 締切済み
  • すぐに回答を!

隣接3項間の漸化式

隣接3項間の漸化式についてです。 一般項はanとすると見にくいのでAnとします。 An+2+pAn+1+qAn=0 (p,qは定数) から場合分けして解いていきますが、これは=0の時しか使えないのでしょうか?

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数116
  • ありがとう数0

みんなの回答

  • 回答No.2
  • bran111
  • ベストアンサー率49% (510/1034)

An+2+pAn+1+qAn=0    のときα,βを α+β=-p αβ=q を満たす数とするとα,βは2次方程式 t^2+pt+q=0 の解として求められ、 An+2+pAn+1+qAn=0 を満たす数列Anは An=aα^n+bβ^n で与えられ、a,bはA1,A2の値から決まります。 ご質問の An+2+pAn+1+qAn=Fn を満たす数列Anは An=aα^n+bβ^n+cFn+d の形で求められます。 a,b,c,dはA1,A2等の値から決まります。 α=βの時は少し違った扱いが必要です。  

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 隣接3項間の漸化式

    隣接3項間の漸化式 次の条件によって定められる数列{an}の一般項を求めよ (1)a1=1,a2=2,a(n+2)+4(an+1)-5an=0(括弧の部分は添え字です。以下括弧は省略します) 指針 隣接3項間の漸化式→まず、an+2をx^2,an+1をx,anを1とおいたxの2次方程式(特性方程式を解く。その2解をα、βとするとan+2-αan+1=β(an+1-αan),an+2-βan+1=α(an+1-βan) が成り立つ。この変形を利用して解決する。 (1)できる方程式の解はx=1、ー5→解に1を含むから、漸化式はan+2-an+1=-5(an+1-an)と変形され、階差数列を利用することで解決 教えてほしいところ ・なぜ、an+2をx^2,an+1をx,anを1とおいたxの2次方程式(特性方程式を解くと、an+2-αan+1=β(an+1-αan),an+2-βan+1=α(an+1-βan)を満たすα、βが求まるんですか?? ・α=1,β=ー5として an+2-αan+1=β(an+1-αan),an+2-βan+1=α(an+1-βan)のどちらを利用しても同じ答えが出るのはなぜですか???

  • だれか漸化式について教えてください。

    もういい中年なのですが昔数学で苦手だった分野を 勉強しています。 いま『なるほど高校数学 数列の物語』と云う本を読んでいます。  漸化式のところでつまずいて前に進めません。  どなたか教えてもらえないでしょうか。  -------------------  初項がA1、An+1=PAn+Q n>1 P、Qは定数  の漸化式で確認しておきましょう。  An+1-α=P(An-α) つまり An+1=PAn-Pα+α  と与えられた漸化式       An+1=PAn+Q  を見て、定数項を比べると   Q=-Pα+α=α(1-P)  となり、この式から       α=Q/(1-P)・・・・・(1)  とすればよいことが判ります。このとき数列{An-α}は  An+1-α=P(An-α)より、公比Pの等比数列となり、その  初項は   A1-α=A1-Q/(1-P)・・・・・・・(2)  なので   An-Q/(1-P)=(A1-Q/(1-P))×Pのn-1乗・・・・(3)  よって   An=(A1-Q/(1-P))×Pのn-1乗+Q/(1-P)・・・・・(4)    と一般項が求まります。  -------------------  数列{An-α}の公比はPになることは直感的に判るのですが  初項はどうして求めるのだろうかと思って読んでいたのですが  最後に求まったのはAnの一般項でした。  それに(4)式にn=1を代入して出てくるのはA1で当たり前の結果  です。  ここでの漸化式はAn+1-α=P(An-α)の形式に持ち込めたら  公比Pの等比数列の公式をあてはめることが出来てnの一般項  が求まると云う主旨かと思うのですが、説明の流れがいまひとつ  つかめません。  解説のほどよろしくお願いいたします。    

  • 漸化式が解けません

    今学校のレポートで、漸化式の問題をやっているのですが、漸化式an={(n-1)/n}an-2を出すとこまではいったのですが、そこから一般式を導くことが出来ません。an+1とanだけなら分かるのですが、2つ項が違うと解き方が分かりません。どなたかヒントでもいいので教えてください!

  • 回答No.1
  • f272
  • ベストアンサー率45% (5269/11624)

=0のときの一般解Sがわかって,さらに=0でないときの解Tがひとつわかれば,=0でないときの一般解はS+Tで求められます。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 漸化式

    まず、an,a1,an+1をうまく表記できなかったので大変見にくいかと思いますが、それぞれaの右下にあるものと思ってください。大変申し訳ありませんがご了承ください。 「数列{an}において、漸化式    a1=a、16a(n+1)=an+3(n≧1)を考える。 このとき、この漸化式は、16(an+1-1/5)=an-1/5 と変形できるので、一般項 an は、an=1/5+(1/16)^n-1(a-1/5)」という解答で 16(an+1-1/5)=an-1/5という式から一般項 an=1/5+(1/16)^n-1(a-1/5)の導き方がわかりません。教えてもらえないでしょうか。よろしくおねがいします。

  • 漸化式

    An+1=An(2)-6An+12 この漸化式の一般項を求めよ ()は二乗です この問題の解き方がわかりません。 途中まで解くとAn+1-3=(An-3)(2)となるようなんですがそこから私には理解不能な変形があるんです。 An-3=(An-1-3)(2)=(An-2-3)(4)=(A1-3)(2)(n-1) これはどうなっているのでしょう? わかりにくくてすいません。 わかる方教えてください!

  • 漸化式

    よろしくお願いします。 [問題] 次の条件で定められる数列{An}の一般項を求めよ。  A1=2、An+1=An/(1+An) (n=1、2、3、……) [解] 条件により A1=2/1、A2=2/3、A3=2/5、A4=2/7  よって、一般に         An=2/(2n-1) ・・・・・・(1)  となることが推測される。   一般項が(1)である数列{An}が、条件を満たすことを示す。  [1] (1)でn=1とおくと  A1=2  [2] (1)をAn/(1+An)に代入すると       An/(1+An)=2/(2n-1)÷{1+2/(2n-1)}              =2/(2n-1)÷(2n+1)/(2n-1)              =2/(2n+1)              =2/{2(n+1)-1}    よって、An+1=An/(1+An) が成り立つ。  [1]、[2]から、求める一般項は  An=2/(2n-1)。 ※このサイトだと項の番号をうまく表記できないので、A1は初項、Anは第n項、An+1は第n+1項などと表しています。 この問題は数列の一般項を推測し、推測した一般項が条件を満たすことを示して、一般項を求めてるみたいなのですが。 [2]の証明で、どうして(1)が漸化式を満たしてるのか、よく分かりません。どうしてですか?。 また、(1)は推測したものだから、全ての自然数nについて(1)が必ず成り立つとは言えないですよね?。なら、(1)を漸化式に代入できないと思うのですが、どうして代入できるのですか?。 以上ですが。分かるかた、教えてくださいm(__)m。

  • 数列の漸化式質問

    教科書で漸化式の記述です。 an+1=pan+qで与えられている数列の求め方 例 a1=3 an+1=3an-4 で定義されている数列を{an}とする 数列{an}は 3 , 5 , 11 , 29 , 83 ,・・・となりますよね。 この数列{an}の各項から2を引くとできる 数列を{an -2}は 1 , 3 , 9 , 27 , 81 , ・・・ となる。数列{an -2}は、初項1 公比3 の等差数列になっている。 数列{an}に対して、数列{an -2}の一般項は an -2=1×3^n-1となっています。 ここが何でn-1なのですか? {an}はn項あると思うのですが・・・ できるだけ詳しい解答お願いします。

  • 漸化式の問題について

    漸化式をやっているのですが、 特性方程式がよくわかりません。 初項3、an+1=3an-2は an+1-1=3(an-1)となると思うのですが、 ここから先がよくわかりません。 皆様よろしくお願いしますm(_)m

  • 数学Bの漸化式です

    数学Bの漸化式です わからない問題があるのでわかりやすく教えて下さい。 [問題] ある数列{an}において、初項から第N項までの和をSnと表す。 この数列が関係式Sn=2an+Nを満たすとき、初項a1と一般式anを求めよ。 と言う問題です。よろしくお願いします。

  • 漸化式の問題です。

    数Bの漸化式の問題です。 Pを正の定数とする。数列{An}はa1=1 An+1=pAn+p^(-n) (n=1,2,3...) を満たす。 このときAnをpとnを用いて表せ。 帰納法以外で解く方法を教えてください!!

  • 漸化式(隣接2項間)・a_n+1=pa_n+q

    漸化式(隣接2項間)の問題・a_n+1=pa_n+q 隣接2項間の漸化式の問題で 例)α=-1より、a_(n+1)+1=3(a_n+1) これがなぜ「数列(a_n+1)が、初項a_1+1=2,公比3の等比数列であることを表している」のでしょうか? どなたかわかりやすくお願いします。

  • だれか隣接3項間漸化式について教えてください。

    中年男性です。いま数列の勉強をしています。「なるほど高校数学 数列の物語」という読本を 読んでいるのですが、手に負えないので質問させてもらいました。  漸化式  A1=2, A2=3, An+2=5An+1-6An    n>=1 ・・・(1)  を満たす数列が特性方程式X^2=5X-6の解 X=2、X=3 から 2^n-1 と3^n-1に なることは実際に確かめて確認して納得したのですが、続くくだりから判らなくなって しまいました。  そのくだりとは“そこで次に問題となるのが、上記のような等比数列以外にこの  漸化式を満たす数列があるのか、ということです。  結論からいうと、特性方程式が異なる2つの解をもつときは、特性方程式の解を  公比とする等比数列の組み合わせを考えるだけで十分です。このことは次の  ようにして判ります・・・” と書いてあり特性方程式の解以外にないことの証明が始まるものと期待して読み進めたの ですが、漸化式の変形が始まり結局    An+1-2An=(A2-2A1)3^n-1    n>=1  ・・・(2)    An+1-3An=(A2-3A1)2^n-1    n>=1  ・・・(3)  という式になり、(2)式から(3)式を引くことで、    An=(A2-2A1)3^n-1-(A2-3A1)2^n-1     n>=1  となり、条件A1=2、A2=3を代入して一般項は    An=-1×3^n-1+3×2^n-1     n>=1 ・・・(4)  となりました。  これで特性方程式の解から導かれる数列以外に解がないことの  証明になるのでしょうか。また数列2^n-1や数列3^n-1が漸化式を  満たすことはすでにnに1、2、3・・・と代入して確認したのですが  一般項が(4)式であるということはどういうことなのでしょうか。  (4)式にnに1、2、3・・・と代入して確認していませんが(成立するのでしょうが)  このあたりの事情がよく判りません。  どなたか解説して戴けないでしょうか。

  • 漸化式

    a1=1,a2=4,an+2=2anで定められる数列{an}の第8項と第9項を求めよ この問題で解説には 1,4,2,8,4,16,8,32,16 であるから a8=32 a9=16 とありました この数の並びから、一つ置きに2をかけていることはわかるのですが なぜそうなるのかわかりません この問題のタイトルには「漸化式」とありました 漸化式の問題は今までに解いたことがありますが an+1=5an+8 などの形しか見たことがありません an+2=2anのこれも漸化式なんでしょうか? わかる方がいれば回答をお願いします