• 締切済み
  • すぐに回答を!

漸化式

次の漸化式の一般項を求めてください! お願いしますm(_ _)m a[n+1]={a[n]-1}/{4a[n]-3} a[1]=1/3です。

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数130
  • ありがとう数0

みんなの回答

  • 回答No.2
  • alice_44
  • ベストアンサー率44% (2109/4758)

一次分数変換による漸化式は、 数列を分子と分母に分けると ベクトルの漸化式に変形できる。 a[n+1] = { a[n] - 1 } / { 4a[n] - 3 } を a[n] = x[n] / y[n] で置換すると x[n+1] / y[n+1] = { x[n] - y[n] } / { 4x[n] - 3y[n] } なので、 x[n+1] = x[n] - y[n], y[n+1] = 4x[n] - 3y[n] を満たす x[n], y[n] があれば、 a[n] = x[n] / y[n] が求めたい解であることが判る。 v[n] = 転置(x[n],y[n]) と置いて、 v[n+1] = A v[n], v[1] = 転置(1,3). ただし、A =   1  -1   4  -3 に問題を変形し、 v[n] = (A^(n-1)) v[1] の A^(n-1) を計算する方法と、 y[n] を消去して、 線形漸化式 x[n+1] - x[n+2] = 4x[n] - 3{ x[n] - x[n+1] } を解く方法があるだろう。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 漸化式の問題

     漸化式の単元の問題でわからないものがあるので教えてください。問題は「数列{a_n}が次の漸化式を満たすとき、{a_n}の一般項を求めよ。 a_1=2 , a_n+1=2a_n+2n+1(n=1,2,3...)」というものです。  どなたか解法を教えて下さいませんか?よろしくお願い致します。

  • 漸化式

    よろしくお願いします。 [問題] 次の条件で定められる数列{An}の一般項を求めよ。  A1=2、An+1=An/(1+An) (n=1、2、3、……) [解] 条件により A1=2/1、A2=2/3、A3=2/5、A4=2/7  よって、一般に         An=2/(2n-1) ・・・・・・(1)  となることが推測される。   一般項が(1)である数列{An}が、条件を満たすことを示す。  [1] (1)でn=1とおくと  A1=2  [2] (1)をAn/(1+An)に代入すると       An/(1+An)=2/(2n-1)÷{1+2/(2n-1)}              =2/(2n-1)÷(2n+1)/(2n-1)              =2/(2n+1)              =2/{2(n+1)-1}    よって、An+1=An/(1+An) が成り立つ。  [1]、[2]から、求める一般項は  An=2/(2n-1)。 ※このサイトだと項の番号をうまく表記できないので、A1は初項、Anは第n項、An+1は第n+1項などと表しています。 この問題は数列の一般項を推測し、推測した一般項が条件を満たすことを示して、一般項を求めてるみたいなのですが。 [2]の証明で、どうして(1)が漸化式を満たしてるのか、よく分かりません。どうしてですか?。 また、(1)は推測したものだから、全ての自然数nについて(1)が必ず成り立つとは言えないですよね?。なら、(1)を漸化式に代入できないと思うのですが、どうして代入できるのですか?。 以上ですが。分かるかた、教えてくださいm(__)m。

  • 漸化式

    漸化式の問題で X(n+1)=1/2*X(n)+1  ”()”の中は小さい添え字です。 の一般項を求めよという問題で、答えが合いませんでした。 一般項はどうなるか教えてください。 方法は、自力でやってみようと思いますので、答えだけお願いします。 X(n+1)=2*X(n)+1 も少し違っていましたのでよろしくお願いします。

  • 回答No.1
noname#187824

an = n / (2n+1) って推定出来るから数学的帰納法で証明すればいいんじゃない? もっと簡単なやり方あるかな?

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 数列  漸化式

    教科書を参考にしても、以下の四問が分からなくってかなりあせってます。答えまで導いていただいたら幸いです。よろしくお願いします!!  次の漸化式で表された数列の一般項a(n)を求めよ (1) a(1)=1、a(n+1)=a(n) / a(n)+1 (2) a(1)=1、a(n+1) / n+1=a(n) / n +2 (3) a(1)=1、n・a(n+1) =(n+1)・a(n) + n(n+1) (4) a(1)=3、a(n+1) = 3a(n) + 3のn+1乗

  • 漸化式の問題

    a[1]=1 a[n]+(2n+1)(2n+2)a[n+1]=2(-1)^n/(2n)! (n=1,2,3,•••••) 一般項a[n]を求めよ 漸化式のどのパターンで解けばいいかわかりません。 教えてください。よろしくお願いします。

  • 漸化式について教えてください

    S[n] = 1 - na[n], a[1]=1/2, a[2]=1/6 を解くと、 (n+1)a[n] - (n-1)a[n-1]=0・・・(n≧2) この漸化式の一般項を求める方法なんですが、 両辺にnを掛けて、n(n+1)a[n] = n(n-1)a[n] n(n-1)a[n]=b[n]とおいて、b[n+1]=b[n] (n≧2)としてから解く場合・・・(x)と a[n]/a[n-1] =(n-1)/(n+1) にしてa[n]/a[1]=2/(n+1)n から解く場合・・・(y) のどちらが良いですか? それと、a[n]=3・4^(n-1) b[1]=1, b[2]=3, b[3]=36 b[n+1]=a[n]・b[n]のとき b[n]の一般項を求める問題なのですが、これは(y)の方法でやると解けると以前にこちらで教えてもらったのですが、(x)の方法でやっても解けるのでしょうか? よろしくお願いします。

  • 数列 漸化式

    A(n+1)=2A(n)+n (初項A(1)=1) という数列があるとします。 この一般項の形を求めるのに、この漸化式を満たす数列{B(n)}=αn+βを設定して、 この漸化式に代入、恒等式から{B(n)=-n-1}がわかります。 この{B(n)}の式が最初の漸化式を満たすわけですから、 A(n+1)=2A(n)+n B(n+1)=2B(n)+nの両辺を引いて A(n+1)-B(n+1)=2(A(n)-B(n))という等比数列が成り立つので、 A(n)=3*(2のn-1乗)-n-1   となると思うのですが、 ここから質問です。 なぜ最初の漸化式を満たした、B(n)=-n-1 と これまた漸化式を満たしている、A(n)=3*(2のn-1乗)-n-1 が異なっているのでしょうか? 回答お願いいたします。

  • 3項間漸化式

    f(1)=2,f(2)=5 f(k+2)=2f(k+1)-f(k)の3項間漸化式からf(k)の一般項を求めるとき、 t^2=2t-1から、 t=1で重解であるから、 f(k+2)-f(k)=f(k+1)-f(k) となると思うのですが、 これは、初項3で、公差1の等差数列ということなのでしょうか? f(k+1)-f(k)=3・1^n-1=3ですが、ここからどのように考えたらいいでしょうか? よろしくお願いします。

  • だれか漸化式について教えてください。

    もういい中年なのですが昔数学で苦手だった分野を 勉強しています。 いま『なるほど高校数学 数列の物語』と云う本を読んでいます。  漸化式のところでつまずいて前に進めません。  どなたか教えてもらえないでしょうか。  -------------------  初項がA1、An+1=PAn+Q n>1 P、Qは定数  の漸化式で確認しておきましょう。  An+1-α=P(An-α) つまり An+1=PAn-Pα+α  と与えられた漸化式       An+1=PAn+Q  を見て、定数項を比べると   Q=-Pα+α=α(1-P)  となり、この式から       α=Q/(1-P)・・・・・(1)  とすればよいことが判ります。このとき数列{An-α}は  An+1-α=P(An-α)より、公比Pの等比数列となり、その  初項は   A1-α=A1-Q/(1-P)・・・・・・・(2)  なので   An-Q/(1-P)=(A1-Q/(1-P))×Pのn-1乗・・・・(3)  よって   An=(A1-Q/(1-P))×Pのn-1乗+Q/(1-P)・・・・・(4)    と一般項が求まります。  -------------------  数列{An-α}の公比はPになることは直感的に判るのですが  初項はどうして求めるのだろうかと思って読んでいたのですが  最後に求まったのはAnの一般項でした。  それに(4)式にn=1を代入して出てくるのはA1で当たり前の結果  です。  ここでの漸化式はAn+1-α=P(An-α)の形式に持ち込めたら  公比Pの等比数列の公式をあてはめることが出来てnの一般項  が求まると云う主旨かと思うのですが、説明の流れがいまひとつ  つかめません。  解説のほどよろしくお願いいたします。    

  • 漸化式のとき方を教えてください。

    添付画像の漸化式の一般項の求め方わかるかたいらっしゃいますでしょうか。 M,J,t は定数 です。

  • 漸化式についてです

    a[n+2]+a[n]=0 a[1]=-1 a[2]=0 という漸化式の一般項を求めよ、という問題なのですが 最終的にiが残らない形になるようにする方法が分かりません。 どなたか分かる方教えて下さると嬉しいです。 よろしくお願いします。

  • 漸化式 a(n+2) + a(n) =0

    漸化式 a(n+2) + a(n) =0  、a(1)=1, a(2)=0 の一般項a(n)の求め方を教えてください。 数十分前の、これと類似した質問は僕のミスです。 申し訳ありません・・

  • 漸化式の問題

    漸化式の問題で分からないのがあります。 解説よろしくおねがいします。 問題 1 1 3 α1= ━,━━━=━━+2 によって定義される数列{αn}の一般項を求めよ 2 αn+1 αn