• ベストアンサー
  • すぐに回答を!

高校の三角関数の問い

高校3年生です。下記の問いを教えて頂きたいです。 解答はあるのですが、解説が無く困っています・・・・ (問1) 0≦θ≦2πとする。y=2(cosθ)x + cos2θ -1の通りうる範囲をxy平面上に図示しなさい。 (解答) (ⅰ)-2≦x≦2の時、y=-(1/2)x^2-2、y≦-2x、y≦2x (ⅱ)x>0の時、-2x≦y≦2x、x<0の時、2x≦y≦-2x 自分でできたのは与式をcosθ=tとおき、tの二次式に整理し、2t^2+2xt-y-2=0 これの判別式をとるとy=-(1/2)x^2-2が出ると思うのですが これ以降がわかりません。 よろしくお願いします。

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数107
  • ありがとう数2

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1

> 自分でできたのは与式をcosθ=tとおき、tの二次式に整理し、2t^2+2xt-y-2=0 それでよいです。このとき、tが実数解を持つような(x,y)の範囲を求める・・・のではなくて、t が -1 ≦ t ≦ 1 で実数解を持つような(x, y) の範囲を求めないとね。t = cosΘ なので。 z = f(t) = 2t^2 + 2xt - y - 2 f(t) = 0 の解が -1 ≦ t ≦ -1 の範囲で少なくとも1つ存在する条件を求めるには、放物線 z = f(t) の軸は t = -x/2 だから、 -x/2 < -1 のときは ・・・ -1 ≦ -x/2 ≦ 1 のときは、・・・ 1 < -x / 2 のときは ・・・ と場合分けをして、(x, y) の範囲を求めればよい。分かりにくければグラフを書いて考える。 (ii) の解答、xの場合分けは間違いですよね。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとうございます! 解けました。まさか問題集の解答が間違っているなんて・・・。 感謝感謝ですm(_ _)m

関連するQ&A

  • 三角関数の問題

    aは実数の定数、0≦θ≦2πの範囲において、 cos2θ-4(a+1)cosθ-4a-1=0 を満たす異なるθの個数を求めよ。 という問題で、 cos^2θ-2(a+1)cosθ-2a-1=0 t=cosθとおく t^2-2(a+1)t-2a-1=0 判別式は d/4=(a+2)^2-2 グラフを図示する (1)-2-√2<a<-2+√2 ではtは解なし (2)a=-2-√2,-2+√2 でtはそれぞれ1つずつ解を持つ (3)a<-2-√2,-2+√2<a でtはそれぞれ2つずつ解を持つ ここまでは分かるのですが、-1≦t≦1の処理とtの値に応じたθの 個数の求め方などが良く分かりません。 分かる方お願いします。

  • 三角関数☆

    問.sin2x=cos2xのxを求めよという問題です。 答がx=π/8,5π/8と書いてあります。 解説もつけて解答をお願いします。

  • 二次関数 三角関数の問題

    0≦x≦60° P=4cos^2x+2acosx-5 が常に正となるための定数aのとりうる値の範囲を求めよ という問題なのですが 常に正となる場合だから判別式D≦0でP>0にすれば いいのかな?っとおもったのですが 答えは場合わけして求めるようです どうして最初の考えと違うのでしょうか・ 間違えた理由がいまいちわからないので教えてください

その他の回答 (1)

  • 回答No.2

やれやれ、誤記訂正 f(t) = 0 の解が -1 ≦ t ≦ 1 の範囲で少なくとも1つ存在する条件を求めるには、・・・ です。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 三角関数について

    kは定数とする。θの方程式 2(√3sinθ-cosθ)+(√3sin2θ+cos2θ)=k(0≦θ≦π) について次の問いに答えよ。 (1)t=√3sinθ-cosθとおくとき、tをrsin(θ+α)の形(r>0、-π<α≦π)に変形せよ。また、tの取りうる値の範囲を求めよ。 (2)(1)のtについてt^2を計算して、 √3sin2θ+cos2θをtの式で表せ。 (3)θの方程式 2(√3sinθ-cosθ)+(√3sin2θ+cos2θ)=k(0≦θ≦π)の解の個数を分類しなさい。 この問題で (1) t=2sin(θ+2/3π) -1≦t≦2 (2)√3sin2θ+cos2θ=-t^2+2 と答えがでて、 (3)y=kとy=-t^2+2t+2が共有点について調べればよい。までわかったんですが、そこからθの個数について分類するまでが分かりません。  解答は k<-1,3<kのとき解θは0個 -1≦k<2のとき解θは1個 k=2,3のとき解θは2個 2<k<3のとき解θは3個 となっていますが、0個の分類はわかるんですが、1~3個までの分類の仕方が分からないので教えてください。

  • 三角関数の不等式(2)

    つぎの問題教えてください。 問い、次の値を求めよ。 (1)sin20°+sin140°+sin260° 解答 =sin140°(2cos120°+1)=0 (2)cos10°+cos110°+cos130° 解答 =cos50°+cos(150°-50°)=0 両問ともなんで途中式から0になるのか知りたいです。 そこだけで結構です。 よろしくお願いします。

  • 三角関数の問題です。

    実数x、yが11x^2+12xy+6y^2=4を満たす時、 x^2+y^2の最大値と最小値を次のように求める。 xy平面上の原点Oと他の点P(x,y)を結ぶ線分OPの長さをr、 x軸と動径OPのなす角をθとすると、 1/r^2(11x^2+12xy+6y^2)=(ア)cos^2θ+(イウ)sinθcosθ+(エ) =(オ)/(カ)cos2θ+(キ)sin2θ+(クケ)/(コ)=(サシ)/(ス)sin(2θ+α)+(クケ)/(コ)である。 但し、sinα=(セ)/(ソタ)、cosα=(チツ)/(テト)である。 従って、x^2+y^2の最大値は(ナ)、最小値は(ニ)/(ヌネ)である。 まったく手に負えません… 問題の意味が全然わからないのですが どなたかわかりやすく説明していただけませんか?

  • 数学の三角関数の加法定理についてです。解き方もどの公式を使えばいいのか

    数学の三角関数の加法定理についてです。解き方もどの公式を使えばいいのかも分からなく全く手が出ません。助けてください。 関数y=sin2乗x-4sinxcosx+5cos2乗xについて、次の問に答えよ。ただし、0≦x<2πとする。 (1)yをsin2x,cos2xで表せ。 (2)yの最大値と最小値を求めよ。また、そのときのxの値を答えよ。 よろしくお願いします。

  • 逆に・・・

     十数年来の疑問を解決したいと思い、ここで質問させて頂きます。大した話しではないのですが・・・。  少なくとも昔の受験問題では、   (1) k^2+2(x+y)k+(2xy+1)=0において、kが実数だとする。(x,y)の範囲を図示せよ。   (2) k^2+2(x+y)k+(2xy+1)=0において、kが任意の実数だとする。(x,y)の範囲を図示せよ。 といった問題が出ていたと思います。お聞きしたいのは、以下に示す解答に逆の検査が必要かどうかですが、まず私には、(1)と(2)が問題として別物に見えます。 (1)の場合  (1)は、可能な全ての実数kに対する(x,y)の満たすべき範囲と、読めます(私には)。字数を少なくしたいので、通常よりも切り詰めて書きますが、   与式においてkが実数 ⇔ 与式の判別式D≧0 なので、   D=(x+y)^2-(2xy+1)=x^2+y^2-1≧0 が解答であり、ここで、   与式の判別式D≧0 ⇒ 与式においてkが実数 を証明しようとしたら、必要十分性を分かっていないとして、減点対象になってもおかしくないと思います。 (2)の場合  (2)は、任意の実数kなので、少なくとも判別式0以上ということで、   与式においてkが任意の実数 ⇒ 与式の判別式D≧0 という事になり、十分性の証明が必要と思えます。(x,y)が、   D=(x+y)^2-(2xy+1)=x^2+y^2-1≧0 を満たしたところで、kが任意の実数をとれるかは、わからないので。私には、これくらいしか考えつけないのですが、逆を言うために(Rは実数全体)、   A={k∈R|k^2+2(x+y)k+(2xy+1)=0 かつ D=x^2+y^2-1≧0} とします。  k∈Rとすれば、そのkについて、   k^2+2(x+y)k+(2xy+1)=0 すなわち、   2(x+k)y=-2x-k^2-1 を満たす(x,y)は、x≠-kであれば、   y=-(2x+k^2+1)/2/(x+k) なので存在し、kは与式を満たす実数なので、k∈A。  x=-kの場合は、   0=2k-k^2-1 となるので、   k^2-2k+1=(k-1)^2=0 ⇒ x=-k=-1(y任意) ⇒ kは与式を満たす実数なので、k∈A となる。従ってR⊂Aであるが、A⊂Rは明らかなので、A=R。  この証明は、少なくとも高校レベルでは、決して易しくないと思います。  何を言いたいかというと、(1),(2)の模範解答に関して、逆の証明を行っているのを見た事がない、という事です(これは、はっきり記憶しています)。その理由なのですが、  (a) (1)と(2)が同じものだと、多くの場合誤解(?)されている.  (b) (2)で逆の証明が難しいので、省略された. と思っていたのですが、考えすぎでしょうか?

  • 三角関数の最大値、最小値の問題

    三角関数の問題で分からないことがあるので質問します。 [問] 次の関数の最大値と最小値を求めよ。 y = 2tan^2θ + 4tanθ + 1 [-(π/2) < θ < (π/2)] ---- この問いに対して私はこのように答えました。 関数を変形して y = 2(tanθ+1)^2-1 tanθ = -1、つまりθ=3/4π, 7/4πで最小値-1 tanθ = 1、つまりθ=π/4, 5/4πで最大値7 ---- このように出しましたが、答え合わせをすると間違っていました。 回答集の答え tanθ = tとおくと-(π/2) < θ < π/2の範囲で、tanθは全ての実数値を取り得る。 yをtの式で表すと y = 2t^2 + 4t + 1 = 2(t+1)^2 - 1 故に、yはt = -1をとり、最大値はない。 t = -1となるのは、tanθ = -1から、θ = -(π/4) よってθ = -(π/4)のとき、最小値-1。最大値はない。 ---- 分かっている疑問点を書き出してみました。 イ:そもそも「-(π/2) < θ < π/2」がよく分からない。随って何故tanθが全ての実数値を取り得るのか分からない。 ロ:模範解答だと「tan = -1つまりθ = -(π/4)」となっている。θ=3/4π, 7/4πではないのか。 宜敷御願い致します。

  • ベクトルと三角関数 2倍角

    問1: Oを原点とする空間内に単位ベクトルn→、v→があります。点A(a→)を通りn→に垂直な平面をαとします。平面α上に無い点(b→)を通り、v→に平行な直線をLとします。次の問いに答えなさい。 ※英小文字の横にある→は全て文字の上にあるものとします。 (1)平面αに関して、点Bと対称な点Cの位置ベクトルC→を求めなさい。 (2)平面αに関して、直線Lと対称な直線をmとおきます。mの方向ベクトルを1つ求めなさい。 問2: 以下の手順に従ってsin18°の値を求めなさい。 (1)   sin72°分のcos18°=1および2倍角の公式を用いて、sin18°cos36°の値を求めなさい。 (2)(1)の結果を利用してt=sin18°の満たす3次方程式を導出し、これを解いてsin18°の値を求めなさい。

  • 三角関数の最大最小についての問題

    関数の最大値と最小値、およびそのときのθの値を求めよ。ただし0≦θ<2πとする。 y=2tan^2θ+4tanθ+5 自分の解答) tanθ=xとおくと、範囲は-1≦x≦1。 y=2x^2+4x+5 y=2(x+1)^2+3 頂点(-1、3) 軸x=-1 よって x=1のとき最大値11 x=-1のとき最小値3 ここでグラフと範囲から最大値・最小値を出したのですが、 答えでは最大値はなしになっていました。 範囲が間違っているのでしょうか、ご指摘宜しくお願いします。

  • Q(p+q, pq)の動く範囲で,y≧0の条件?

    ご教示お願いします。 問題:座標平面上の点 ( p, q )は x^2 + y^2 ≦8, y ≧ 0 で表される領域を動く。 点Q (p+q, pq )の動く範囲を図示せよ。 この解答で,X = p+q, Y = pq とおいて,XとYの関係式 X^2 - 2 Y ≦ 8 ・・・・・・(1) を作り,かつ, t^2 - Xt + Y =0 ・・・・・・(2) が実数解を持つことから,この判別式 D = X^2 - 4 Y ≧ 0 ・・・・・・ (3) までは考えたのですが, 問題にある“ y ≧ 0” をどのように反映させてよいかがわかりません。 よろしくお願いいたします。

  • 図形

    xy平面上に2つの放物線C1:y=-2x^2, C2:y=x^2-x+1がある。 C1上の点P(p,-2p^2)、C2上の点Q(q,q^2-q+1)の対して、線分PQの中点Rの存在する範囲を図示せよ。 中点Rを(X.Y)とすると、X=(p+q)/2…(1) Y=(-2p^2+q^2-q+1)/2…(2) これらを満たす実数p,qが存在すればよいので、(1)より、p=2x-q これを(2)に代入して、tに関する2次関数とみて(判別式)≧0より、 範囲はy≦6x^2-2x+1/2 あってますか?