• ベストアンサー
  • すぐに回答を!

単振り子の問題

原点Oのまわりに自由に回転できる、長さdのひもに質量mの質点と 見なせる小さい物体をつるした単振り子がある。 物体の位置Pは静止したつりあいの位置R0 (回転によってできる円の真下)からのひものなす角度θとし、 反時計回りを正とする。時刻t=0で、つり合いの位置R0において 水平方向にエネルギーを与えて単振り子を振動させる。 この単振り子はどの位置においてもひもの長さはdを保つ。 重力加速度をg、原点Oのまわりの慣性モーメントをIとする。 (1)点Oのまわりんの慣性モーメントIを求める。 (2)物体がつり合いの位置の真上Raに達するためのエネルギーを求める。 (3)与えるエネルギーが十分小さいときの物体の位置および 角周波数ω0を求める。 (4)物体の運動を支配する運動方程式を求める。 (5)θとdθ/dtの関係を表すグラフの書き方。 (4)は、糸の方向に働いている糸の張力Tsと重力の糸の方向の成分 はつりあっているので Ts=mgcosθ がまず成り立ち、次に糸に垂直な方向では、重力の分力-mgsinθ=F のために加速度a=-gsinθを生じますよね? そして、弧PR0の長さをxで表すと ma=-mgsinθ d^2x/dt^2 = a = -gsinθ ⇔x=gsinθ ・・・・ これからどうすればいいのか迷ってます。 助けてください。

共感・応援の気持ちを伝えよう!

  • 物理学
  • 回答数3
  • 閲覧数853
  • ありがとう数3

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.2

>x=gsinθとなって >sinθ ≒ θ >の近似を使い >x=gθ 少し違うようですよ。 >d^2x/dt^2 = a = -gsinθ までは合ってますから、xの時間での2階微分を x" とすると  x" = -gsinθ ですね。 あとは x = d*θ の関係式を使うと、  x" = d*θ" ですから、θのみのよく知られた形の微分方程式になります。

共感・感謝の気持ちを伝えよう!

その他の回答 (2)

  • 回答No.3
  • nikorin
  • ベストアンサー率24% (47/191)

θは時間の関数であることに気が付いておられますか? それがわかれば、あとは雪崩のように解けると思いますよ。

共感・感謝の気持ちを伝えよう!

  • 回答No.1

θの単位は[rad]でしょうか? それならば、  x = d*θ という式が成り立ち、微分方程式  d^2x/dt^2 = a = -gsinθ がθのみで書けます。 あとはこのままでは解析的に解けないので  sinθ ≒ θ の近似を使います。

共感・感謝の気持ちを伝えよう!

質問者からの補足

単位はおそらく[rad]でいいと思います。 ただ、角度θと書かれているだけなので。 >d^2x/dt^2 = a = -gsinθ >がθのみで書けます。 x=gsinθとなって sinθ ≒ θ の近似を使い x=gθ ということですよね? これからどうすればいいのでしょうか?

関連するQ&A

  • 振り子の位置エネルギー

    振り子(糸の長さL ,質量m)の単振り子がある。 (1)60度まで持ち上げたときの位置エネルギーを求めよ。 (2)振り子のなす角が(θ<60°)の時の角運動量と原点Oまわりでの力のモーメントを求めよ (3)耐久力が2mgの糸であるとき、この振り子にこの運動をさせると糸は切れるか? (4)最下点でのおもりの速さと糸にかかる張力を求めよ (5)αで上昇するエレベーター内で同じ運動をさせたとき、糸は切れるか? という問題がありました。 そもそも振り子で近似を使って復元力F=-mgsinθから近似して mα=-mgsinθ sinθをθと近似 mα=-mgθ θ=xl よってα= -(g/l)x ということは初等物理で勉強したのですが 位置エネルギーはどのように出すのでしょうか。 そもそも60度は微小な角ではないので近似した式を用いて積分してポテンシャルを出すということもなんかしっくりこなくて困っています。 大変な作業ですがお時間がございましたら是非教えてください。

  • 物理の宿題

    単振り子の運動方程式を力学的エネルギー保存則から、おもりの軌道の接線成分の運動から、おもりの位置を(x,y)とする直行座標からの三つの方法で証明せよ。長さ l の糸の先に質量 m のおもりをつけ、糸の他端を固定してつり下げ、糸の固定点の真下の振り子のつりあいの位置をO、張力をT、重力加速度をg、糸の鉛直方向となす角がθとおく。このとき単振り子の運動方程式が ld^2θ/dt^2+gsinθ=0 になることを証明せよ。 という問題なんですが、力学的エネルギー保存則からはできたのですがほかの二つのやり方が見当もつきません。教えてください、よろしくお願いします。

  • 単振り子

    単振り子の運動方程式をエネルギー保存則から導け 単振り子は糸の長さがLで先についているおもりの重さがm糸の張力がT 重力加速度がgで速さがV糸と鉛直方向の角度がθです 宜しくお願いします

  • 振り子について

    宜しくお願いします。 運動をしている振り子が最上点に達すると、運動エネルギーがゼロになり、すべて位置エネルギーに変わるのですが、この瞬間に振り子の糸を切ると、おもりはどうなるのでしょうか。 私は、最上点を頂点とした放物線をえがいて落下すると思います。(慣性があるからと思います。) ただ、最上点にあるおもりが、切った位置の真下へ落ちるのかもしれないとも思うのです。 正解はどちらでしょうか? 宜しくお願いします。

  • 振り子運動における物体のt秒後の速さと位置について

    図がなくわかりにくくて、申し訳ございません。  支点から物体の重心までの距離をr、物体に働く重力加速度をg、鉛直線と糸のなす角度をθ、物体の速さをv、物体の接線方向に働く重力加速度aとすると  a=gsinθ・・・(1)  また、角速度をαとするとα=dθ/dt、角加速度をβとするとβ=dα/dt、β=d^2θ/dt^2となります。また、v=rα、a=rβと表せるので、(1)より  rβ=gsinθ  となります。ここで、β=d^2θ/dt^2より  rd^2θ/dt^2=gsinθ となると思うのですが、ここから上手く展開できません。  どなたか別の方法でも構いませんので、アドバイスよろしくお願い致します。

  • ばね振り子の力学的エネルギーの証明

    ばね振り子の振動中の任意の一点と自然長でのばね振り子の力学的エネルギーが等しいことを証明しようと思うのですが、うまくいきません。 外力が働かないため、力学的エネルギー保存則が成り立っているといえばそれまでなのですが、そうではなく、実際に計算によって確かめたいのです。 ばね定数kのばねに重さmの重りをぶら下げた時の釣り合いの位置をd(つまり、mg=kd)とする。 自然長(×つり合いの位置)Oでの速さをv0、任意の点Yでの速さをv、長さをyとすると、力学的エネルギー=運動エネルギー+重力の位置エネルギー+弾性エネルギーより、 E(Y)=mv^2/2+mg(y-d)+k(y-d)^2/2 E(O)=mv0^2/2+0+0 よって、 E(O)-E(Y)=m(v0^2-v^2)-(mg(y-d)+k(y-d)^2/2) =…… などと計算を続けたのですが、自分ではうまく0にできません。 どなたか模範回答をご教示ください。どうかよろしくお願いします。

  • 剛体の振り子 先端に質点があることが悩ませます

    こんにちは、 かなりこんがらがっており、解答がないため、確認もできずもがいております。 図の通りなのですが、ロッドの片側が振り子の支点でして、もう片側に質点がついております。 これを水平状態から、放して、最下点で質量Mのブロックにぶつけるという過程を想定しています。 問題は 1)このロッド+質点の慣性モーメントを求めよ 2) 衝突直前の最下点での角速度を求めよ 3) 衝突後のブロックの速さが2m/sだった場合、ブロックにかかった力積 linear impulseはいくらか 4) また、振り子にかかった角力積 angular impulse はいくらか 5) したがって、衝突直後の振り子の角速度はいくらかになるか 6) 衝突の間に、どれだけの力学的エネルギーが失われたか であります。 1)について初っ端からつまづきました。やってみました。 ロッドの慣性モーメント(ML^2) / 3ですので、それに質点の慣性モーメントがmL^2だと思うので、 トータルで、慣性モーメントIは、 I = (ML^2) / 3 + mL^2 と考えております。 2) これが、ほぼ分かりません。(1)で求めた慣性モーメントを使うと思われますが、むむむ、 糸口が見つかりません。エネルギー保存則を使うのか、それにしても初期状態(振り子が水平位置)での位置エネルギーはどう表されるのかが、わかりません。端緒に質点がなければ、ロッドの重心からロッドの位置エネルギーをもとめることができますが、端緒に質点があることでどこに重心があるのか、よくわかりません。どうか宜しくお願いします。 そして、これ以降が進みません。すみません。 何とか解法をお教え頂けないでしょうか。 とても困っておりまして、どうかお願いします。

  • 力学の剛体振り子

    力学の剛体振り子についてしつもんです。 画像にもあるように2重の剛体振り子についての質問です。 天井に自由に回転できるAによって固定されています。 一つ目の剛体は一様な棒です。 一様な棒は質量m長さaです。 二つ目の剛体は円板です。 半径R、質量Mとなっています。 円板は棒の端にある自由に回転できるジョイントにつけられています。 A点の鉛直下向きの線からの振り子の棒までの角度をθ、 棒と円板をくっつける自由ジョイントBから鉛直下向きに線をおろし、 円板の直径とのなす角度をφとしています。 振り子のふりはじめはθ=θo φ=φo をふりはじめの角度としています。 棒のA点まわりの慣性モーメントをIoa 円板のB点まわりの慣性モーメントを Ic として、 運動エネルギー、位置エネルギーを求めたいとおもっています。 運動方程式算出を、θ、φ、θ'、φ'、θ''、φ''を用いてとく。 ↓問題点は自分の問題点です・・・・ 2つ解き方があると考えています (1)剛体の運動エネルギーは、重心の運動エネルギー+重心を回転中心とした回転の運動エネルギー より求める方法です。 問題点:しかし、円板の回転による運動エネルギーは、どの角度をつかって(1/2)I ?^2 ?の角度がわかりません。 (2)棒、円板ともに座標を置いて微分、(1/2)mv^2にする方法 問題点:慣性モーメントをもとめているのに使わない・・・・・・ よろしければ導出も含め、おしえていただけると運動エネルギー、位置エネルギー 運動方程式をおしえていただけるとありがたいです。 よろしくおねがいします。

  • 単振り子が切れないように…

    質量mのおもりを長さrの糸に取り付けた単振り子がある。 (糸は同じおもりをもう1つ付けてもギリギリ切れない強度を持っている) この(おもり1つだけの)単振り子を糸が切れないように運動させるとき、 おもりを最大どの高さまで上げることができるか。 但し、高さの基準は振り子の最下点とする。 ↑の問題が分かりません(^^; 2mgが限界なのだから、あとmg分の力にも耐え得るということですよね…? おもりに働く張力と重力以外の力は…慣性力なんでしょうか? 解法を説明していただけると助かります。

  • 剛体振り子の問題について

    質量M、半径aの一様な球体を質量の無視できる長さlの細い直線棒の先に固定して、振り子をつくる。この振り子を完全に静止させ、質量mの小さな銃弾を撃ち込んだ。銃弾は球体の中心に向かって水平に速度vで撃ち込まれ、球体中央部に埋まったままの状態で振り子が微小振動を開始した。この微小振動の最大振れ角を計算せよ。ただし、銃弾との衝突による球体の変形や重心位置の変化、銃弾の大きさはいずれも無視できるとする。尚、銃弾が撃ち込まれる前の振り子の慣性モーメントをIo、水平軸から球体の中心までの距離をd(=l+a)と表記してよい。 という問題で私はまず、運動量の保存則から mv=(m+M)V V=mv/(m+M) dω=V ω=V/d・・・(1) エネルギー保存則から (Ioω^2)/2=(M+m)gd(1-cosθ) という式をたて最大振れ角θを求めようと思ったのですが、エネルギー保存則の左辺の項が銃弾が撃ち込まれる前の慣性モーメントしか使われていないという間違いに気づきどのように直せばよいのかが分かりません。 どなたかヒントでもよろしいので回答よろしくお願いします。