• ベストアンサー
  • 困ってます

因数と素因数およびそれを用いた証明

他の方の質問に回答しているやりとりの中でどうしても腑に落ちないことがあり、これ以上その方の回答欄に書くわけにもいかないと思い質問します。 「素因数」…ある整数の約数である素数のこと。 「因数」…一つの数または式がいくつかの数または式の積によって形成されている場合、その個々のその個々の数や式、因子。 (いずれも広辞苑より) とあります。 この説明を読む限りでは、素因数⊂因数だと思います。つまり、整数が因数の積で表される時、その因数が素数の時は特に素因数と呼ぶ、と。 ということは、証明においてある整数の因数全体で成り立つことが示せれば、その整数の素因数でも成り立つことは自明だと思うのですが、違うのでしょうか? また、ほとんどの参考書および教科書では、 「ある整数Aと1を除く自然数mにおいて、A^3がmの倍数⇔Aがmの倍数」であることを自明のこととして扱っています(mが素数かどうかに関わらず)。事実私もそうでした。しかし、自明ではないという意見もあるようです。どちらなのでしょうか? 自明であるという意見の方はその理由を、自明でないと言う方は反例をあげて下さい。 長文になりましたが、よろしくお願いします。

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数129
  • ありがとう数4

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
  • ONB
  • ベストアンサー率38% (8/21)

前半部に関しては仰るとおりだと思います。 後半部においては、ほとんどの参考書および教科書では、とありますがこれはおそらく読み間違いでしょう。 自明どころか誤りです。mが素数なら正しいですが、 m=4 , A=2 は明らかに反例になってますね。 なお、上で素数なら正しいと書きましたが、素数でなくても成り立つ数はたくさんあります。どういう数なら成り立つのか考えてみるのはいい勉強になるのではないでしょうか。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

すばやい回答ありがとうございます! ほんとだーこんなことに気づかなかったなんて…だいぶまぬけですね。 で回答を読ませていただいて思ったのですが、mが素数の累乗の時は確かに反例がいくらでも作れますが、素数の1乗同士の積、例えばm=6、m=10などの時は自明としてよろしいのでしょうか?

その他の回答 (1)

  • 回答No.2
  • ONB
  • ベストアンサー率38% (8/21)

はい、仰るとおり、m=6とか10とか、素因数分解に同じ素数が現れないような数なら正しいです。しかし、自明と言っていいレベルではおそらくないでしょう。証明が必要な事柄です。 仮に大学入試の答案につかうならきちんと証明してから使うか、時間がなければ一言、「素因数分解に同じ素数が二回以上現れないので、」のような但し書きは要るはずです。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

わかりました。ありがとうございます! 自分自身がm=6とか10とか15とかそういう数字でしか考えてなかったので「絶対成り立つじゃん」と思っていましたが累乗は考えてなかったですね…数学で特殊な形を無視してはいけないことを痛切に感じました。わかっているつもりで必死で論理展開していた自分が恥ずかしい><。 非常に参考になりました。ありがとうございます。

関連するQ&A

  • 中3 数学

    素数、因数、約数についての質問です。 12=1×12と表すとき 1と12は12の因数と言うことは正しいのでしょうか? 素数分解の過程で1を因数とは見なさないため、因数と約数の違いを説明する際に 言葉に詰まってしまいました。 因数とは 数や式が積の形で表されるときの ひとつのひとつの数や式のことを言うのだから 12=1×12のとき1は因数であると言うことに間違いはないでしょうか? 90の約数を素因数分解を使って求めよ、という類の問題の本質を分かりやすく伝えるにはどうすれば良いでしょうか?

  • 素因数分解の問題

    久々に素因数分解の問題を解いてみようとしたところ、いきなり躓いてしまいました。 二桁の整数nに168をかけると、ある数の二乗になりました。この整数nはいくらになるかという問題です。 168を素因数分解し、n×168=n×2^3×3×7となることは分かります。 これから先、どのように組み立てて解けばよいのか分かりません。 解説では、各素数が偶数個になるように解くと書かれており、ある数の二乗になるため、 n=2×3×7×m^2となっていました。 どうしてこのような式なるのですか? A=A^p×b^q×c^rとなっている時、各指数がすべて偶数(2の倍数)なっていれば、Aは何かの二乗になることは確かめてみました。

  • 素因数分解と約数の個数

    こんばんわ。早速ですが、質問に移らさせていただきます。 例えば、36=2の2乗×3の2乗、と素因数分解できます。このように、素数の積にする事により 約数の個数が解ります。この場合、 (指数+1)×(指数+1)が、約数の個数になります。 このような公式を学んだところなのですが、具体的な整数でいろいろと試してみましたが、なぜ、そのような公式になるのかが、検討もつきません。何か、手がかりがあれば、よろしくお願いいたします。

  • 約数と因数の違い(∈N)

    中学校3年で「素因数分解」が教科書に出てきます。 教科書では「因数」「素数」「素因数分解」の順に説明されています。「因数」と小学校で習う「約数」の違いは何ですか? ほとんど同じなのかと思いますが、「因数」の方は1およびもとの数を含まないのかな??と思ったのです。 だって多項式の因数分解の話では(x^2+2x+4)は実数の範囲では「因数分解できない」っていいますよね。 どなたか正確なところをご存知でしたら教えてください。また出典も教えていただければ幸いです。

  • 素数は無限に多く存在することの証明(ユークリッドの別証)を二つの添削

    ユークリッドの証明は背理法を用いた証明。 素数を有限個とするならその最大素数をpnとして素数を小さい順にp1,p2,…,pnとした時 N=p1*p2*p3*…pn + 1 全ての自然数は素因数に分解できるのでp1~pnの少なくとも一つ因数に持つはずだが、どれで割っても1あまる。これはpnが最大の素数であることに矛盾 素数は無限に存在する。 といった証明。今回はこれの別称として以下の漸化式を用いたものを解けという問題です。 ◆a_{n}:=2^(2^n) + 1, n=1,2,3,… を用いた証明 この時任意のm≠nに対しa_{m}, a_{n}は互いに素である。実際n>mの時 a_{n} - 2 = 2^(2^n) - 1     ={2^2^(n-1) + 1}{2^2^(n-1) - 1}     =a_{n-1}*(a_{n-1} - 2)     =a_{n-1}*a_{n-2}*…*a_{m}*(a_{m} - 2) となるのでa_{m},a_{n}の公約数dは2の約数でなければならない。他方a_{m},a_{n}は奇数であるから(←漸化式より)d=1となる。すると各a_nを素因数分解すると少なくとも一つ素因子pnが得られ、これらはnが異なれば一致しない。かくして無限個の素数p1,p2,p3,…,pn,…が得られた□ ◆正整数の列a_nを次のように定める a_{n+1} = a_{n}*(a_{n} - 1) + 1, a_{1} = 2 これを用いて素数が無限であることを示すのですが 任意のm≠nに対して a_{n} - 1 = a_{n-1}*(a_{n-1} - 1)       = a_{n-1}*a_{n-2}*(a_{n-2} - 1)       = a_{n-1}*a_{n-2}*…*a_{m}*(a_{m} - 1) よりa_{n},a_{m}の公約数は1の約数でなければならない。よってa_{n},a_{m}は互いに素である。 すると各a_nを素因数分解すると少なくとも一つ素因子pnが得られ、これらはnが異なれば一致しない。かくして無限個の素数p1,p2,p3,…,pn,…が得られた□ これら2つの証明はこれであっているでしょうか?

  • 素因数分解の一意性を保たせるため?

    「素数」とは「1とその数自身の他に約数を持たない数」と習いました。 1は素数ではないということですが、これは「素因数分解の一意性を保たせるため」と知りました。 これはどういうことでしょうか? 中学生でも解るようにご説明下さい。 (それとも中学生に解るように、は無理でしょうか……?) 宜しくお願いします。

  • 数学的「割り切れる」と「因数と約数」の定義を教えてください。

    数学的「割り切れる」と「因数と約数」の定義を教えてください。 いわいる1=0.999... の手合いの問題です。(多いときは週一でくるそうですが) 以下「因数・約数」を同一視します。(また煩瑣なので整数限定を無視します) 1=0.999... この両辺を3で割ると 1/3=0.333... となりますが、この時右辺を3で割り切れたとすると、1を3で割ったことになりますから 成立しません。 当然結論として『割った時、循環小数が現れる場合割り切ったことにならない』 という結論を得ますが、そうなると約数(因数)の定義から、『3は0.999...の約数(因数)ではない』 となりますよね? つまり 1=3(0.333...) と分解することはできないとなりますが,両辺を3で割るとすると 1/3=0.333... となり、誤謬の式から真となる式がでてきます。 つまり定義やルールがあやふやだと『1を3で割り切る』ことができてしまいます(?)。 約数の定義が『ある整数を割り切ることのできる整数』であるからして 循環小数について約数の定義を当てはめるのは馬鹿らしいのですが、 因数・約数(ときに倍数)を同一視している人が多いのと、 自身『約数・因数』『割り切る』の定義がわからないので聞きました。 最後に要点をまとめますと 1 割り切れないものを因数分解できるか→0.999...=3(0.333...) 2 1の時、因数であっても「割り切れる」とできないのか    →(0.00...1は存在しないのだから極限によって『1を3で割り切る』ことはできないのか) 3 つまる所1=0.999...=3(0.333..)としたとき3で割り切れたことにならないか 当方数学が苦手なので、できる限り噛み砕いた説明を希望します。

  • 連続する整数の積を用いた因数分解

    問 x(x-1)(x-2)=4・5・6の解を求めよ。 という問題において、連続する整数の積の考え方を用いることで瞬時にxの因数は6ということがわかってしまうらしいのですがなぜでしょうか? 連続する整数の積の考え方では 連続する整数の個数がm個の場合m!の約数を持つ ということなので 左辺も右辺もともに6の約数を持っているということはわかります。 しかし、約数ならば因数であるとは必ずしもいえないはずなのに 今回は問題を見ただけでわかってしまうのでしょうか? 回答お願いします。

  • 小5算数 整数の性質

    どの程度まで扱うべきだと思いますか。以下私案: 1 約数と倍数:偶数と奇数,約数と倍数の意味,倍数の見分け方 2 素数と素因数分解:素数,素因数分解 3 最大公約数とその利用:2数及び3数の最大公約数とその利用 4 最小公倍数とその利用:2数及び3数の最小公倍数とその利用 5 2つの整数とその最大公約数・最小公倍数との関係

  • 偶数、奇数、倍数、約数、素数について教えて下さい。

    小学校で偶数や倍数などについて習ったのですが、 中学校になって、負の数を習ったり、文字式を習ったり、整数の問題をやっているうちに、 定義がいまいち分からなくなってしまいました。(現役中学生です。) ・偶数、奇数、倍数、約数それぞれにゼロは含まれるのか。 ・素数、偶数、奇数、倍数、約数、に負の数は含まれるのか。  これは、例えば、 -1は素数になるのか、 -2は偶数なのか、もしくは、そもそも負の数に偶数と言うものは無いのか(奇数も同様に)、 -12の約数や倍数はあるのか、もしくは、そもそも負の数に約数・倍数がないのか、 あるとしたら、  3の倍数に負の数や、-3の倍数に正の数があるか、  -6と-9の公約数、-8と12の公約数はあるか、 などなどです。 検索してもよく分からないのですが、教えてもらえないでしょうか。